• Title/Summary/Keyword: Urban heat island effects

Search Result 106, Processing Time 0.027 seconds

A Study on the Urban Heat Simulation Model Incorporating the Climate Changes (기후변화가 반영된 도시 열환경 시뮬레이션 모델의 연구)

  • Kang, Jonghwa;Kim, Wansoo;Yun, Jeongim;Lee, Joosung;Kim, Seogcheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.697-707
    • /
    • 2018
  • A fast running model comprising the climate change effects is proposed for urban heat environment simulations so as to be used in urban heat island studies and/or the urban planning practices. By combining Hot City Model, a high resolution urban temperature prediction model utilizing the Lagrangian particle tracing technique, and the numerical weather simulation data which are constructed up to year of 2100 under the climate change scenarios, an efficient model is constructed for simulating the future urban heat environments. It is applicable to whole city as well as to a small block area of an urban region, with the computation time being relatively short, requiring the practically manageable amount of the computational resources. The heat environments of the entire metropolitan Seoul area in South Korea are investigated with the aid of the model for the present time and for the future. The results showed that the urban temperature gradually increase up to a significant level in the future. The possible effects of green roofs on the buildings are also studied, and we observe that green roofs don't lower the urban temperature efficiently while making the temperature fields become more homogeneous.

Study on Heat Environment Changes in Seoul Metropolitan Area Using WRF-UCM: A Comparison between 2000 and 2009 (WRF-UCM을 활용한 수도권 지역의 열환경 변화 연구: 2000년과 2009년의 비교)

  • Lee, Bo-Ra;Lee, Dae-Geun;Nam, Kyung-Yeub;Lee, Yong-Gon;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.483-499
    • /
    • 2015
  • This study examined the impact of change of land-use and meteorological condition due to urbanization on heat environment in Seoul metropolitan area over a decade (2000 and 2009) using Weather Research and Forecasting (WRF)-Urban Canopy Model (UCM). The numerical simulations consist of three sets: meteorological conditions of (1) October 2000 with land-use data in 2000 (base simulation), (2) October 2009 with land-use data in 2000 (meteorological condition change effect) and (3) October 2009 with land-use data in 2009 (both the effects of land-use and meteorological condition change). According to the experiment results, the change of land-use and meteorological condition by urbanization over a decade showed different contribution to the change of heat environment in Seoul metropolitan area. There was about $1^{\circ}C$ increase in near-surface (2 m) temperature over all of the analyzed stations due to meteorological condition change. In stations where the land-use type changed into urban, large temperature increase at nighttime was observed by combined effects of meteorological condition and land-use changes (maximum $4.23^{\circ}C$). Urban heat island (UHI) over $3^{\circ}C$ (temperature difference between Seoul and Okcheon) increased 5.24% due to the meteorological condition change and 26.61% due to the land-use change. That is, land-use change turned out to be contributing to the strengthening of UHI more than the meteorological condition change. Moreover, the land-use change plays a major role in the increase of sensible heat flux and decrease of latent heat flux.

Predicting the Effects of Rooftop Greening and Evaluating CO2 Sequestration in Urban Heat Island Areas Using Satellite Imagery and Machine Learning (위성영상과 머신러닝 활용 도시열섬 지역 옥상녹화 효과 예측과 이산화탄소 흡수량 평가)

  • Minju Kim;Jeong U Park;Juhyeon Park;Jisoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.481-493
    • /
    • 2023
  • In high-density urban areas, the urban heat island effect increases urban temperatures, leading to negative impacts such as worsened air pollution, increased cooling energy consumption, and increased greenhouse gas emissions. In urban environments where it is difficult to secure additional green spaces, rooftop greening is an efficient greenhouse gas reduction strategy. In this study, we not only analyzed the current status of the urban heat island effect but also utilized high-resolution satellite data and spatial information to estimate the available rooftop greening area within the study area. We evaluated the mitigation effect of the urban heat island phenomenon and carbon sequestration capacity through temperature predictions resulting from rooftop greening. To achieve this, we utilized WorldView-2 satellite data to classify land cover in the urban heat island areas of Busan city. We developed a prediction model for temperature changes before and after rooftop greening using machine learning techniques. To assess the degree of urban heat island mitigation due to changes in rooftop greening areas, we constructed a temperature change prediction model with temperature as the dependent variable using the random forest technique. In this process, we built a multiple regression model to derive high-resolution land surface temperatures for training data using Google Earth Engine, combining Landsat-8 and Sentinel-2 satellite data. Additionally, we evaluated carbon sequestration based on rooftop greening areas using a carbon absorption capacity per plant. The results of this study suggest that the developed satellite-based urban heat island assessment and temperature change prediction technology using Random Forest models can be applied to urban heat island-vulnerable areas with potential for expansion.

Implementing the Urban Effect in an Interpolation Scheme for Monthly Normals of Daily Minimum Temperature (도시효과를 고려한 일 최저기온의 월별 평년값 분포 추정)

  • 최재연;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.203-212
    • /
    • 2002
  • This study was conducted to remove the urban heat island effects embedded in the interpolated surfaces of daily minimum temperature in the Korean Peninsula. Fifty six standard weather stations are usually used to generate the gridded temperature surface in South Korea. Since most of the weather stations are located in heavily populated and urbanized areas, the observed minimum temperature data are contaminated with the so-called urban heat island effect. Without an appropriate correction, temperature estimates over rural area or forests might deviate significantly from the actual values. We simulated the spatial pattern of population distribution within any single population reporting district (city or country) by allocating the reported population to the "urban" pixels of a land cover map with a 30 by 30 m spacing. By using this "digital population model" (DPM), we can simulate the horizontal diffusion of urban effect, which is not possible with the spatially discontinuous nature of the population statistics fer each city or county. The temperature estimation error from the existing interpolation scheme, which considers both the distance and the altitude effects, was regressed to the DPMs smoothed at 5 different scales, i.e., the radial extent of 0.5, 1.5, 2.5, 3.5 and 5.0 km. Optimum regression models were used in conjunction with the distance-altitude interpolation to predict monthly normals of daily minimum temperature in South Korea far 1971-2000 period. Cross validation showed around 50% reduction in terms of RMSE and MAE over all months compared with those by the conventional method.conventional method.

A Consideration of the Correlation Between the Change of Surface Temperature on the Roof and the Adoption of the Green Roof vs Non Green Roof -Application in DaeJeon Area- (옥상녹화와 비 옥상녹화 표면의 온도변화 상관관계 고찰 -대전지역을 중심으로-)

  • Lee, Eung-Jik;Kim, Jun-Hui
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.134-140
    • /
    • 2012
  • With rapid modernization and industrialization, many urban areas are becoming overcrowded at a rapid pace and such urban ecological problems as heat island effect are becoming serious due to the reduced green zones resulted from the indiscriminate development. To solve this problem, ecological park, constructed wetlands, and greening on the elevation, balcony, and roof of a building that have the structure and function very close to the state of nature are currently being promoted at the urban or regional level. Especially green roof will be able to not only provide the center of a city with a significant portion of green area but also help to relive heat island effect and improve micro climate by preventing concrete of a building from absorbing heat. According to a recent study, the temperature of green roof in the summer season shows a lower temperature than the outdoor temperature, but inversely the concrete surface shows a higher temperature. Accordingly, this study measured the surface temperature of buildings with green roof in Daejeon area in order to determine how the green roof system would have an impact on the distribution of surface temperature and did a comparative analysis of the distribution of the surface temperature of green roof vs non-green roof based on these theoretical considerations. As a result, it was found that the surface temperature of green roof was lower by $4{\sim}7^{\circ}C$ than that of non-green roof. This is expected to contribute to the mitigation of urban heat island effects.

An Analysis of Rational Green Area Ratio by Land Use Types for Mitigating Heat-Island Effects (도시열섬완화를 위한 토지 이용 유형별 합리적 녹지율 분석)

  • SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.59-74
    • /
    • 2015
  • The purpose of this study is to analyze reasonable green area ratios for mitigating urban heat island considering various land use types. Land uses of 5 types such as single residential, multi residential, commercial area, public facility, and industrial area were considered. Green areas were extracted from the tree attribution of land cover. Effect of urban heat island was analysed by the surface temperature of ASTER thermal infrared radiance scanned daytime and nighttime. Mitigation effect of green area at daytime was higher than nighttime. Surface temperature of green area was low in single residential at daytime. But the difference of surface temperature by each land use type was small. The effect of surface temperature mitigation of green area was lower in industrial area. The results of reasonable green area ratios for mitigating urban heat island indicate that surface temperature was the lowest with green area ratio of 40~50% in single residential, multi residential, and commercial area at daytime. Surface temperature of nighttime was not changed much by green area ratios. Therefore, the results of this study will be suggested in urban development planning to construct effectively green area for mitigating urban heat island.

Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones (드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석)

  • Cho, Young-Il;Yoon, Donghyeon;Shin, Jiyoung;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1985-1999
    • /
    • 2021
  • The purpose of this study is to apply urban heat island reduction techniques(green roof, cool roof, and cool pavements using heat insulation paint or blocks) recommended by the Environmental Protection Agency (EPA) to our study area and determine their actual effects through a comparative analysis between land cover objects. To this end, the area of Mugye-ri, Jangyu-myeon, Gimhae, Gyeongsangnam-do was selected as a study area, and measurements were taken using a drone DJI Matrice 300 RTK, which was equipped with a thermal infrared sensor FLIR Vue Pro R and a visible spectrum sensor H20T 1/2.3" CMOS, 12 MP. A total of nine heat maps, land cover objects (711) as a control group, and heat island reduction technique-applied land covering objects (180) were extracted every 1 hour and 30 minutes from 7:15 am to 7:15 pm on July 27. After calculating the effect values for each of the 180 objects extracted, the effects of each technique were integrated. Through the analysis based on daytime hours, the effect of reducing heat islands was found to be 4.71℃ for cool roof; 3.40℃ for green roof; and 0.43℃ and -0.85℃ for cool pavements using heat insulation paint and blocks, respectively. Comparing the effect by time period, it was found that the heat island reduction effect of the techniques was highest at 13:00, which is near the culmination hour, on the imaging date. Between 13:00 and 14:30, the efficiency of temperature reduction changed, with -8.19℃ for cool roof, -5.56℃ for green roof, and -1.78℃ and -1.57℃ for cool pavements using heat insulation paint and blocks, respectively. This study was a case study that verified the effects of urban heat island reduction techniques through the use of high-resolution images taken with drones. In the future, it is considered that it will be possible to present case studies that directly utilize micro-satellites with high-precision spatial resolution.

A Design Model Development for Street-Oriented Block Housing Reducing Urban Heat Island Effects (도시 열섬 완화를 위한 가로형 집합주택 계획모델 연구)

  • Kim, Ho-Jeong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.6
    • /
    • pp.27-37
    • /
    • 2019
  • This study focused on the possibility of reducing the cooling load through the change of micro climate in the outdoor space during summer season. This study proposes an efficient planning model by comparing the effects of urban heat island mitigation through wind path planning, outdoor space vegetation, and exterior material change by using the basic model of the street-oriented block housing proposed in the previous research by the same author. As a result, the most effective wind path planning strategy in the street-oriented block housing was the change of the air flow through the mass height adjustment. When the tall building masses were staggered and arranged in a balanced manner, the overall wind environment could be improved. The greater the height difference between low and high masses, the better the air flow was shown. It was also important to arrange the building masses so that the inlet of the main wind was open and to allow the external space to connect to the adjacent block to create a continuous flow. The change of outdoor space vegetation and flooring, and the formation of wind paths through the opening of lower part also showed the effect of heat island reduction. In addition, the change of PMV in summer was the biggest influence of shadow by tall building mass. Attention should be paid to the fact that high-albedo exterior materials are adversely affected by multiple reflections in dense street-oriented block housing. The use of albedo of the exterior material showed that it is necessary to pay attention to apply in the high density block housing. This is attributed to the rise of the temperature due to the absorption of energy into the low-albedo flooring, where the high-albedo exterior causes multiple reflections.

Analysis of Thermal Characteristics for Areas of Musim Stream in Cheongju City (청주시 무심천 주변의 열환경 특성 분석)

  • Park, Jin-Ki;Na, Sang-Il;Park, Jong-Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • The urban thermal environment can be an important index to detect heat island phenomena and manage it to improve urban life quality. Cheongju is a typical plain-city that main part has been formed and developed in lowland. The Mushim stream crosses the city from south to north. We reviewed the use of thermal remote sensing in stream around areas and the thermal environments, focusing primarily on the Urban Heat Island(UHI) effect. The purpose of this study is to determine the relationship between the stream nearby urban area and the stream cooling effect of UHI. The objectives are to determine the usefulness of KOMPSAT-2 bands MS3 and MS4 for vegetation cover mapping, and the usefulness of LANDSAT TM band 6 in identifying thermal environmental characteristics and UHI. Land Surface Temperatures (LST) are retrieved by single-channel algorithm to study the UHI from the 6th band (thermal infrared band) of LANDSAT TM images and thermal radiance thermometer based on remote sensing method and the LST distribution maps are accomplished according to the retrieval results. There is also comparison of satellite-derived and in situ measured temperature. The results indicated that the LST of urban center is higher than that of suburban area, the temperature of mountain and water are the lowest area, so it is clearly proved that there are obvious UHI effects by stream. The surface temperature distribution of Mushim stream is detected $2^{\circ}C$ lower than urban area.

A Study on the Urban climate Mitigation Effects with Ecological Landscape Planning with reference to Namyang-Ju Walsanli Master-plan (환경생태계획의 도시기후 변화 대응 가능성 연구 -남양주 월산리 마스터플랜을 중심으로)

  • Moon, Soo Young;Kim, Hyun Soo;Lee, Kwang Bok
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.11-19
    • /
    • 2010
  • To meet with the nation's policy of Green Growth, local governments are rushing to propose an ecological urban development plan. And although various studies stress on the need of ecological planning to harmonize development with preservation, we have come to a point in which a quantitative evaluation of how much ecological planning contributes to the environmental load is needed. Through the increasing tendency of making plans based on the development of IT technology, capability of gathering environmental data and scientific instrument, studies on ecological planning's effect towards environmental load has recently begun. This study aims to perform a quantitative evaluation on how ecological planning mitigate urban heat island in the region of Namyang-ju Wallsanli. Three theories were used to mitigate urban heat island ; White network, Green network and Blue network. As a result, the atmosphere temperature was reduced the whole site $1.1^{\circ}C$ and partly $7^{\circ}C$ and the mean radiant temperature was reduced the whole site $1.1^{\circ}C$ and partly $8.7^{\circ}C$ on the modified ecological landscape plan in summer. The PMV index is 0~1 in ecologically modified landscape plan otherwise almost 3 in landscape plan. This study has its limits on the fact that results may differ from the actual plan as the study was performed based on the land use plan and building plan. However, what is important is that it shows a quantitative result of the effect that ecological planning has on surrounding environment and reducing environmental load.