• Title/Summary/Keyword: Urban heat island

Search Result 339, Processing Time 0.033 seconds

The development of highly functional paints improving NIR reflectance by investigating silica particles size for pigment mixing (안료배합용 실리카 입자사이즈에 따른 근적외선 반사율을 향상시킨 고기능성 도료 제조)

  • Eunseok Woo;Yunseok Noh;Jinho Lee;Yong-Wook Choi;Bora Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.98-104
    • /
    • 2024
  • In order to overcome the urban heat island effect, highly functional paint is attracting attention as a promising means by shielding heat on the structure (building) surface. When a paint was prepared containing nano-sized silica particles, the heat-insulating performance was relatively higher than that of paints with other sizes. In addition, developed paints showed enhanced properties such as chemical resistance and abrasion resistance test because of the presence of nano-sized silica included in functional paint.

The Effectiveness of Roof Planting for Reducing Urban Heat Island Phenomenon

  • Kobayashi Takahiro;Gotoh Keinosuke;Yoshioka Ryouhei;Tanaka Yoshiki
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.533-536
    • /
    • 2004
  • Presently, heat island phenomenon, leading towards global warming, is one of the major environmental problems. As a solution of this problem, roof and surface wall planting is considered to be effective. Accordingly, the objective of this study is to examine the effectiveness of roof planting in reducing the heat island phenomenon. The results of the study show that, planted area of the observed house roof had lower average temperature, in between $l5-20^{\circ}C,$ in comparison with that of the unplanted area of the roof.

  • PDF

Implementing the Urban Effect in an Interpolation Scheme for Monthly Normals of Daily Minimum Temperature (도시효과를 고려한 일 최저기온의 월별 평년값 분포 추정)

  • 최재연;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.203-212
    • /
    • 2002
  • This study was conducted to remove the urban heat island effects embedded in the interpolated surfaces of daily minimum temperature in the Korean Peninsula. Fifty six standard weather stations are usually used to generate the gridded temperature surface in South Korea. Since most of the weather stations are located in heavily populated and urbanized areas, the observed minimum temperature data are contaminated with the so-called urban heat island effect. Without an appropriate correction, temperature estimates over rural area or forests might deviate significantly from the actual values. We simulated the spatial pattern of population distribution within any single population reporting district (city or country) by allocating the reported population to the "urban" pixels of a land cover map with a 30 by 30 m spacing. By using this "digital population model" (DPM), we can simulate the horizontal diffusion of urban effect, which is not possible with the spatially discontinuous nature of the population statistics fer each city or county. The temperature estimation error from the existing interpolation scheme, which considers both the distance and the altitude effects, was regressed to the DPMs smoothed at 5 different scales, i.e., the radial extent of 0.5, 1.5, 2.5, 3.5 and 5.0 km. Optimum regression models were used in conjunction with the distance-altitude interpolation to predict monthly normals of daily minimum temperature in South Korea far 1971-2000 period. Cross validation showed around 50% reduction in terms of RMSE and MAE over all months compared with those by the conventional method.conventional method.

A Study on the Urban climate Mitigation Effects with Ecological Landscape Planning with reference to Namyang-Ju Walsanli Master-plan (환경생태계획의 도시기후 변화 대응 가능성 연구 -남양주 월산리 마스터플랜을 중심으로)

  • Moon, Soo Young;Kim, Hyun Soo;Lee, Kwang Bok
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.11-19
    • /
    • 2010
  • To meet with the nation's policy of Green Growth, local governments are rushing to propose an ecological urban development plan. And although various studies stress on the need of ecological planning to harmonize development with preservation, we have come to a point in which a quantitative evaluation of how much ecological planning contributes to the environmental load is needed. Through the increasing tendency of making plans based on the development of IT technology, capability of gathering environmental data and scientific instrument, studies on ecological planning's effect towards environmental load has recently begun. This study aims to perform a quantitative evaluation on how ecological planning mitigate urban heat island in the region of Namyang-ju Wallsanli. Three theories were used to mitigate urban heat island ; White network, Green network and Blue network. As a result, the atmosphere temperature was reduced the whole site $1.1^{\circ}C$ and partly $7^{\circ}C$ and the mean radiant temperature was reduced the whole site $1.1^{\circ}C$ and partly $8.7^{\circ}C$ on the modified ecological landscape plan in summer. The PMV index is 0~1 in ecologically modified landscape plan otherwise almost 3 in landscape plan. This study has its limits on the fact that results may differ from the actual plan as the study was performed based on the land use plan and building plan. However, what is important is that it shows a quantitative result of the effect that ecological planning has on surrounding environment and reducing environmental load.

Detection of Heat Change in Urban Center Using Landsat Imagery (Landsat 영상을 이용한 도심의 열변화 탐지)

  • Kang, Joon-Mook;Ka, Myung-Seok;Lee, Sung-Soon;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.197-206
    • /
    • 2010
  • Recently, developed countries have continuously been trying to recognize many issues about heat island in urban area and to make up countermeasures for them. This research is designed to extract change of land cover in the area under condition of land development with satellite images and to analyze its effect on the heat change in there. Heat change upon change of land cover in daejeon was analyzed with the four Landsat satellite images taken in April 1985, August 1994, May 2001, and May 2009. In order to measure the temperature on the surface in the city, the land surface temperature was produced with Landsat TM Band 6. Heat change is to detected with it. As a result, The urban area has been increased up to 23.59 percent. On the other hand, the forest area has been decreased up to 27.91%. Due to the urbanization, the temperature on the surface in urban center was higher than surrounding area. In that case, the temperature of urban center area was higher 2.4 to $5.7^{\circ}C$ compared with the forest area.

An Analysis of the Temperature Change Effects of Restoring Urban Streams in Busan Area (부산지역 도심하천 복원에 따른 기온변화 효과 분석)

  • Jung, Woo-Sik;Do, Woo-Gon
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.939-951
    • /
    • 2012
  • This study is conducted to estimate the air temperature decreasing effects by restoring urban streams using WRF/CALMET coupled system. The types of land use on covered streams are constructed with the land cover map from Korea ministry of environment. Restoring covered streams changes the types of land use on covered areas to water. Two different types of land use(CASE 1 and CASE 2) are inputted to the WRF/CALMET coupled system in order to calculate the temperature difference. The results of the WRF/CALMET coupled system are similar to the observed values at automatic weather stations(AWS) in Busan area. Restoring covered streams causes temperature to be decreased by about $0.34{\sim}2^{\circ}C$ according to the locations of streams and the regions that temperature is reduced are widely distributed over the restored area. Reduction of temperature is increased rapidly from morning and maximus at 13LST. Natural restoration of streams will reduce the built-up area within urban. With this, temperature reductions which are the cause to weaken the urban heat island appear. Relief of urban heat island will help to improve the air quality such as accumulation of air pollutants in within urban area.

Simulation Analysis of Urban Heat Island Mitigation of Green Area Types in Apartment Complexes (유형별 녹지 시뮬레이션을 통한 아파트 단지 내 도시열섬현상 저감효과 분석)

  • Ji, Eun-Ju;Kim, Da-Been;Kim, Yu-Gyeong;Lee, Jung-A
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.153-165
    • /
    • 2023
  • The purpose of this study is to propose effective scenarios for green areas in apartment complexes that can improve the connection between green spaces considering wind flow, thermal comfort, and mitigation of the urban heat island effect. The study site was an apartment complex in Godeok-dong, Gangdong-gu, Seoul, Korea. The site selection was based on comparing temperatures and discomfort index data collected from June to August 2020. Initially, the thermal and wind environment of the current site was analyzed. Based on the findings, three scenarios were proposed, taking into account both green patches and corridor elements: Scenario 1 (green patch), Scenario 2 (green corridor), and Scenario 3 (green patch & corridor). Subsequently, each scenario's wind speed, wind flow, and thermal comfort were analyzed using ENVI-met to compare their effectiveness in mitigating the urban heat island effect. The study results demonstrated that green patches contributed to increased wind speed and improved wind flow, leading to a reduction of 31..20% in the predicted mean vote (PMV) and 68.59% in the predicted percentage of dissatisfied (PET). On the other hand, green corridors facilitated the connection of wind paths and further increased wind speed compared to green patches. They proved to be more effective than green patches in mitigating the urban heat island, resulting in a reduction of 92.47% in PMV and 90.14% in PET. The combination of green patches and green corridors demonstrated the greatest increase in wind speed and strong connectivity within the apartment complex, resulting in a reduction of 95.75% in PMV and 95.35% in PET. However, patches in narrow areas were found to be more effective in improving thermal comfort than green corridors. Therefore, to effectively mitigate the urban heat island effect, enhancing green areas by incorporating green corridors in conjunction with green patches is recommended. This study can serve as fundamental data for planning green areas to mitigate future urban heat island effects in apartment complexes. Additionally, it can be considered a method to improve urban resilience in response to the challenges posed by the urban heat island effect.

Analysis of Surface Urban Heat Island and Land Surface Temperature Using Deep Learning Based Local Climate Zone Classification: A Case Study of Suwon and Daegu, Korea (딥러닝 기반 Local Climate Zone 분류체계를 이용한 지표면온도와 도시열섬 분석: 수원시와 대구광역시를 대상으로)

  • Lee, Yeonsu;Lee, Siwoo;Im, Jungho;Yoo, Cheolhee
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1447-1460
    • /
    • 2021
  • Urbanization increases the amount of impervious surface and artificial heat emission, resulting in urban heat island (UHI) effect. Local climate zones (LCZ) are a classification scheme for urban areas considering urban land cover characteristics and the geometry and structure of buildings, which can be used for analyzing urban heat island effect in detail. This study aimed to examine the UHI effect by urban structure in Suwon and Daegu using the LCZ scheme. First, the LCZ maps were generated using Landsat 8 images and convolutional neural network (CNN) deep learning over the two cities. Then, Surface UHI (SUHI), which indicates the land surface temperature (LST) difference between urban and rural areas, was analyzed by LCZ class. The results showed that the overall accuracies of the CNN models for LCZ classification were relatively high 87.9% and 81.7% for Suwon and Daegu, respectively. In general, Daegu had higher LST for all LCZ classes than Suwon. For both cities, LST tended to increase with increasing building density with relatively low building height. For both cities, the intensity of SUHI was very high in summer regardless of LCZ classes and was also relatively high except for a few classes in spring and fall. In winter the SUHI intensity was low, resulting in negative values for many LCZ classes. This implies that UHI is very strong in summer, and some urban areas often are colder than rural areas in winter. The research findings demonstrated the applicability of the LCZ data for SUHI analysis and can provide a basis for establishing timely strategies to respond urban on-going climate change over urban areas.

A Study on the Urban Heat Simulation Model Incorporating the Climate Changes (기후변화가 반영된 도시 열환경 시뮬레이션 모델의 연구)

  • Kang, Jonghwa;Kim, Wansoo;Yun, Jeongim;Lee, Joosung;Kim, Seogcheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.697-707
    • /
    • 2018
  • A fast running model comprising the climate change effects is proposed for urban heat environment simulations so as to be used in urban heat island studies and/or the urban planning practices. By combining Hot City Model, a high resolution urban temperature prediction model utilizing the Lagrangian particle tracing technique, and the numerical weather simulation data which are constructed up to year of 2100 under the climate change scenarios, an efficient model is constructed for simulating the future urban heat environments. It is applicable to whole city as well as to a small block area of an urban region, with the computation time being relatively short, requiring the practically manageable amount of the computational resources. The heat environments of the entire metropolitan Seoul area in South Korea are investigated with the aid of the model for the present time and for the future. The results showed that the urban temperature gradually increase up to a significant level in the future. The possible effects of green roofs on the buildings are also studied, and we observe that green roofs don't lower the urban temperature efficiently while making the temperature fields become more homogeneous.

Quantitative Study on the Effect of the Building Composition on the Urban Thermal Environment (건물군 조건이 도시 열환경에 미치는 영향에 관한 정량적 검토)

  • Yeo, In-Ae;Yoko, Kamata;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.180-183
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate was analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1)The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. (2)Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature.

  • PDF