• 제목/요약/키워드: Urban heat island

검색결과 338건 처리시간 0.033초

A Multiplex Housing Energy Conservation Strategy through Combining Insulation Standard Based Green Roof Systems and Passive Design Elements

  • Son, Hyeongmin;Park, Dong Yoon;Chang, Seongju
    • KIEAE Journal
    • /
    • 제14권1호
    • /
    • pp.31-38
    • /
    • 2014
  • Recently, the coverage of urban forests has been rapidly decreasing as the cities are created and expanding. Consequently, there arise urban problems such as heat island effect, urban flooding, urban desertification and so on. In this context, green roof systems is considered to be an efficient alternative to deal with these problems. However, it is difficult to apply green roof to new buildings since the majority of the buildings in cities are already constructed and the demand for new building constructions is not high enough. Therefore, it should be considered to apply green roof system to existing buildings for resolving various problems. This study evaluates heating and cooling energy consumption based on the combination of passive design factors such as wall, roof, window insulation in addition to a green roof system applied to an existing house by using an energy simulation program. Total 8 potential improvement cases are developed. Each case is applied to the same house with different insulation standard for simulations. Through the analysis of the simulated cases with the chosen test house, it is confirmed that heating energy consumption decreases as improvement cases are applied, but cooling energy consumption is relatively not much affected by each improvement case. In addition, when each improvement case is applied to already highly insulated house, the effect of thermal energy improvement decreases while the same improvement that is applied to the case with low insulated house tends to yield higher improvement rate.

담장허물기로 인한 주택지 외부공간의 열환경 평가 (Evaluation of Thermal Environment of External Space following the Fence Demolition Campaign in Detached Housing Area)

  • 류지원;정응호;시미즈 아키;오상학;호야노 아키라
    • 한국주거학회논문집
    • /
    • 제23권1호
    • /
    • pp.19-26
    • /
    • 2012
  • This study examines how fence demolition may change the thermal environments of external spaces of houses and suggests what factors need to be considered when a fence is demolished. The results of the research are summarized as follows. In terms of the surface temperature, there was no significant difference in all time plots after the removal of all materials. However, applying greening methods (changing the surface materials, planting trees, and building a green roof following fence demolition) could lower the surface temperatures, calling for proper plans for various greening methods. The MRT results indicates that walls block solar radiation and provide shade, reducing radiant heat from roads and surrounding structures during the daytime when solar radiation directly effects surface temperatures. Also, the application of greening methods such as planting vegetation and trees could have shading and evapotranspiration effects, leading to a lower temperature distribution. The HIP results were similar to the MRT results. They indicated that walls block solar radiation within the residential sections and provide shade, resulting in a lower temperature distribution during the daytime. However, areas where greening methods such as a green roof or tree planting were applied showed $1{\sim}2^{\circ}C$ difference in temperature distribution.

도시·건축형태와 미기후의 관계에 대한 관찰 연구 (An Observation Study of the Relationship of between the Urban and Architectural Form and Microclimate)

  • 이건원;정윤남
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권11호
    • /
    • pp.109-119
    • /
    • 2018
  • 본 연구는 도시·건축형태가 도시공간 내 미시기후에 미치는 영향을 도출하고자 했다. 본 연구에서는 도시 내 미시기후에 영향을 미치는 도시·건축형태의 요소로 도시형태 및 도시조직, 건축물 형태 및 특성 등을 선정했다. 분석을 위해 2017년 8월에 기상청에서 서울시 내에 설치한 23개의 AWS 설치 지점 도시건축의 특성이 명확하게 구분되는 6곳을 선정하여 연구진의 AWS 장비를 이용하여 실측을 했다. 공간의 범위는 AWS 설치 지점으로부터 반경 500m로 한정하여, 미시기후 및 도시·건축형태 요소들을 조사했다. 분석결과, 가로의 방향, 건축물 폭, 건축물 깊이, 건축물 높이, 지형의 경사도 및 향, 교통량 등은 미시기후인 국지풍속, 일사량, 국지온도 등에 영향을 미치고 있었다. 본 연구의 결과는 폭염의 피해 저감 및 그에 따른 시민 개개인의 건강 관리에 도움을 줄 것으로 기대된다. 또한, 도시의 온도를 낮춤으로써 건축물 에너지 부하 저감 효과를 거둠으로써 건축물 에너지 소비량 감소의 효과를 통해 보다 건강하고, 지속가능한 도시 조성에 기여할 것으로 기대된다.

여름철 토지피복별 기온변화 특성 (Characteristics of Air Temperature Variations under Different Land Covers during Summer)

  • 김진수;박종화;정구영;오광영
    • 한국농공학회논문집
    • /
    • 제49권1호
    • /
    • pp.79-88
    • /
    • 2007
  • We investigated the characteristics of temperature variations under different land covers (paddy field, upland, urban park, and urban residential area) during hot summer (July 15 to August 19, 2005). The temperatures were monitored using data loggers at one hour intervals in study sites. The mean temperature generally increased with the distance from edge of paddy fields, being $1.5^{\circ}C$ higher at a site 170-m far from paddy fields than at a paddy field area at 22 h. The mean daily temperatures in the study period followed the ordo. of paddy field $(26.6^{\circ}C)$ < upland $(27.0^{\circ}C)$ < park $(27.5^{\circ}C)$ < residential area $(28.0^{\circ}C)$. The paddy field area has shown remarkable cooling effects compared to the residential area: Mean duration of temperature below $25^{\circ}C$ in the paddy field area was longer (8.6 hrs) than in the residential area; The time to fall to below $25^{\circ}C$ in the paddy field area was sooner (22.4 hr) than in the residential area; Mean daily minimum temperature in the paddy field area was much lower $(2.4^{\circ}C)$ than in the residential area. More research is needed to better clarify the mechanism of cooling effect of a paddy field area by investigating heat balance of a paddy field.

위성영상의 시계열 분석을 통한 미기후변화 분석 -대구시 달서구를 대상으로- (A Study on Microclimate Change Via Time Series Analysis of Satellite Images -Centered on Dalseo District, Daegu City-)

  • 백상훈;정응호
    • 한국지리정보학회지
    • /
    • 제12권2호
    • /
    • pp.34-43
    • /
    • 2009
  • 바람길 도입을 통한 도시열섬현상의 저감 방안에 관한 선행연구들을 바탕으로 본 연구에서는 도시화과정을 거치면서 발생하는 토지피복의 변화가 도시공간의 찬공기 생성 및 유동에 어떠한 변화를 일으키는지 분석하였다. 연구 대상지로는 우리나라의 대표적인 극서(劇暑)도시이며 1980년대 이후 주변 지역을 편입하여 도시가 확장된 대구시 내에서도 특히 지표온도의 변화가 크고 1988년 신설되어 급격한 인구 증가가 이루어졌던 달서구를 대상으로 연구를 실시하였다. 시간적 범위로는 1987년, 1997년, 2007년의 여름철 위성영상을 이용하여 20년간의 도시미기후 변화를 연구하였다. 연구결과 자연 토지피복의 감소와 인공 토지피복의 증가는 찬공기 생성 및 유동에 불리하여 도심지에서의 찬공기의 양과 높이가 현저히 낮아졌다. 이는 찬공기 생성 및 유동기능이 토지피복에 의해 영향을 받는 것으로 보였다. 지속적인 찬공기 생성 및 유동의 확보를 위해서는 도시를 둘러싼 주변지역의 공간적 특성을 분석하여 도시개발이나 도시재생을 실시해야 하며, 이를 통해 쾌적하고 건강한 도시조성이 될 수 있을 것으로 사료된다.

  • PDF

바텀애시를 활용한 인공경량토양의 개발 및 성능 평가 (Development and Evaluation of Artificial Lightweight Soil Using Bottom Ash)

  • 김철민;김민우;조근영;최나래
    • 한국건설순환자원학회논문집
    • /
    • 제6권4호
    • /
    • pp.252-258
    • /
    • 2018
  • 대규모의 에너지 소비 및 인구의 증가로 온실가스 증가 및 열섬 현상이 빈번한 도시는 녹지공간의 증대가 요구되었고, 한정된 도시 공간에서는 건축물 옥상에 녹지공간을 형성하는 옥상녹화가 증대되었다. 옥상녹화에 사용하는 경량토양은 주로 펄라이트를 사용하나 비산, 분진 등 작업환경의 악화로 다른 경량토양의 요구가 증대되었다. 한편 화력발전소에서 발생하는 바텀애시는 재활용을 위한 다양한 연구가 진행되었는데, 인공경량토양으로의 활용가능성도 확인된 바 있다. 본 연구는 기존의 바텀애시 활용 인공경량토양보다 혼합량이 높은 바텀애시를 사용한 인공경량토양을 개발하고자, 바텀애시의 물리적, 화학적 특성을 분석한 후 유기물의 필요성을 확인하고, 바크, 퇴비, 코코피트 등의 유기재료 배합을 달리하여 최적의 배합을 도출하였고, 이 배합을 조경설계기준에서 제시한 토양성능 항목에 적합여부를 확인한 결과, 중급 정도의 성능을 갖는 인공경량토양임을 확인하였다.

도시림의 여름 대기온도 저감효과 - 서울시를 대상으로 - (The Effects of Urban Forest on Summer Air Temperature in Seoul, Korea)

  • 조용현;신수영
    • 한국조경학회지
    • /
    • 제30권4호
    • /
    • pp.28-36
    • /
    • 2002
  • The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the Oafnc facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperahne, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field swey of summer air temperature be Performed for the vadidation of the models. The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the traffic facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperature, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field survey of summer air temperature be Performed for the vadidation of the models.

Thermal and Electrical Energy Mix Optimization(EMO) Method for Real Large-scaled Residential Town Plan

  • Kang, Cha-Nyeong;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.513-520
    • /
    • 2018
  • Since Paris Climate Change Conference in 2015, many policies to reduce the emission of greenhouse gas have been accelerating, which are mainly related to renewable energy resources and micro-grid. Presently, the technology development and demonstration projects are mostly focused on diversifying the power resources by adding wind turbine, photo-voltaic and battery storage system in the island-type small micro-grid. It is expected that the large-scaled micro-grid projects based on the regional district and town/complex city, e.g. the block type micro-grid project in Daegu national industrial complex will proceed in the near future. In this case, the economic cost or the carbon emission can be optimized by the efficient operation of energy mix and the appropriate construction of electric and heat supplying facilities such as cogeneration, renewable energy resources, BESS, thermal storage and the existing heat and electricity supplying networks. However, when planning a large residential town or city, the concrete plan of the energy infrastructure has not been established until the construction plan stage and provided by the individual energy suppliers of water, heat, electricity and gas. So, it is difficult to build the efficient energy portfolio considering the characteristics of town or city. This paper introduces an energy mix optimization(EMO) method to determine the optimal capacity of thermal and electric resources which can be applied in the design stage of the real large-scaled residential town or city, and examines the feasibility of the proposed method by applying the real heat and electricity demand data of large-scale residential towns with thousands of households and by comparing the result of HOMER simulation developed by National Renewable Energy Laboratory(NREL).

투수성 아스팔트포장 구조설계방법에 관한 연구 (A Study on the Structural Design of Permeable Asphalt Pavement)

  • 이수형;유인균;김제원
    • 한국도로학회논문집
    • /
    • 제13권3호
    • /
    • pp.39-49
    • /
    • 2011
  • 도시부 도로에서 투수성포장의 효용성은 널리 인식되고 있으나, 빗물침투로 인한 노상의 약화를 고려한 포장 두께 설계는 아직 제시되지 못하고 있다. 도시에서 빗물을 도로포장의 표면에서 바로 배수시키지 않고, 표면을 투과해서 노상으로 침투시키는 구조를 갖는 투수성포장은 도시홍수의 억제, 배수시설의 부하 경감, 지중생태계 개선, 열섬현상 억제 등 기존 불투수성 포장으로 인해 발생되는 여러 가지 문제를 저감시킬 수 있을 것으로 기대되고 있다. 그러나 투수성포장의 구조설계는 빗물 침투로 노상이 약화되는 현상을 적절히 고려할 수 없어, 투수성포장에 대한 구조설계방법은 아직 제시되지 못하고 있다. 본 연구에서는 빗물에 의한 노상의 약화 정도에 대한 문헌적 정보와 역학적 분석을 통해 잠정적으로 적용할 수 있는 투수성 아스팔트포장의 구조설계방법을 제시하였다. 문헌적 정보는 노상함수비가 최적함수비에서 2% 증가에 따라 탄성계수가 20% 감소한다는 조건을 적용하였다. 실제 현장을 대상으로 투수성포장을 적용할 경우 유한요소 해석결과와 기존 설계방법에 노상의 강도저하를 고려한 결과 기존두께에 30cm 정도 보조기층을 보강해야 하는 것으로 분석되었다. 이것은 일본에서 투수성 아스팔트포장의 구조설계에 적용하고 있는 증가두께와 유사한 것으로 나타났다.

A Study on the Thermal Characteristics of Midsummer in Daegu Metropolitan Area

  • Park, Myung-Hee;Lee, Joon-Soo;Ahn, Won-Shik;Kim, Hae-Dong;Oh, Sung-Nam
    • 한국환경과학회지
    • /
    • 제22권6호
    • /
    • pp.667-677
    • /
    • 2013
  • This study aims to examine the actual status of the urban heat island in Daegu by analyzing the data of 17 automatic weather stations installed in the Daegu area. And the results can be summarized as follows: First, regarding the temperature distribution in Daegu by summer time zones, for the 31 days(August 1st till 31st), 18 days showed daily maximum temperature over $30^{\circ}C$, and 11 days indicated daily minimum temperature over $25^{\circ}C$. The day that showed the highest daily maximum temperature was August 5th, which indicated $36^{\circ}C$. Second, about the spatial distribution of time ratio exceeding $30^{\circ}C$ and $25^{\circ}C$, the area with the highest time ratio exceeding $30^{\circ}C$ is mostly the downtown(central area), eastern area, and northern area. Meanwhile, regarding the time ratio exceeding $25^{\circ}C$, the downtown area centering around the central area were high as over 70%, and the outskirts were low as under 65%. Third, considering the temporal distribution of daily maximum temperature and daily minimum temperature, daily maximum temperature was shown around 14:00 to 15:00 while the daily minimum temperature was indicated around 17:00 to 18:00. Daily maximum and minimum temperature were appeared at northeast and downtown, respectively. Fourth, regarding the spatial distribution of tropical days and tropical night days, tropical days showed 77% and tropical night days indicated 42% before and after the 24th and also the 13th each. Tropical days were occurred up to 24 days at northeastern area. And the southwestern area of Daegu showed under 22 days. The downtown showed the 14 days of the tropical night. However, the outskirts indicated relatively few days as under 10 days. Fifth, about the spatial distribution of the average daily temperature range (the difference between the highest temperature and lowest temperature), the central area, the central part of the city, showed the smallest as $7.2^{\circ}C$, and as it was closer to the northern area, it became larger, so in the eastern and northern area, it was over $8.8^{\circ}C$ or so.