• 제목/요약/키워드: Urban heat environment

검색결과 305건 처리시간 0.027초

도시의 인공열 산정에 관한 연구 (Study on Estimation of Urban Anthropogenic Heat Generation)

  • 손은하;김유근;홍정혜
    • 한국대기환경학회지
    • /
    • 제16권1호
    • /
    • pp.37-47
    • /
    • 2000
  • The Urban thermal environment is influenced and modified in many ways. One modification is brought by the anthropogenic heat generation emitted from the combustion processes and the use of energy such as industrial, domestic and traffic procedure. The anthropogenic heat generation affect an the increase of urban temperature, the well-known urban heat islands. The study on the urban thermal environment needs a great deal of the statistic data about the inner-structure of urban, the contribution of different constructions and the traffic amount on urban thermal environment in finite region. In order to overtake a quantitative analysis of effect of the anthropogenic heat, a distribution map of the urban anthropogenic heat was made using hte data of the energy consumption used at the several constructions and traffic amount of vehicles in Pusan Metropolitan. Annual mean heat flux over the 4$\textrm{km}^2$ urbanized area in Pusan is 41.5W/$m^2$, ranging from 31.4W/$m^2$ in summertime to 59.5W/$m^2$ in wintertime and maximum diurnal anthropogenic heat generation is corresponding to 10% of irradiance during summertime.

  • PDF

부산지역 도시 열섬의 변화경향 분석 (2006-2010) (An Analysis on the Variation Trend of Urban Heat Island in Busan Area (2006-2010))

  • 도우곤;정우식
    • 한국환경과학회지
    • /
    • 제21권8호
    • /
    • pp.953-963
    • /
    • 2012
  • The annual variations of the urban heat island in Busan is investigated using surface temperature data measured at 3 automatic weather stations(AWSs) for the 5 years period, 2006 to 2010. Similar to previous studies, the intensity of the urban heat island is calculated using the temperature difference between downtown(Busanjin, Dongnae) and suburb(Gijang). The maximum hourly mean urban heat island are $1.4^{\circ}C$ at Busanjin site, 2300LST and $1.6^{\circ}C$ at Dongnae site, 2100LST. It occurs more often at Dongnae than Busanjin. Also the maximum hourly mean urban heat island appears in November at both sites. The urban heat island in Busan is stronger in the nighttime than in the daytime and decreases with increasing wind speed, but it is least developed in summer. Also it partly causes the increasement of nighttime PM10 concentration.

도시 열환경 시뮬레이션을 위한 라그랑지안 열원 역추적 기법의 연구 (Study On Lagrangian Heat Source Tracking Method for Urban Thermal Environment Simulations)

  • 김석철;이주성;윤정임;강종화;김완수
    • 한국대기환경학회지
    • /
    • 제33권6호
    • /
    • pp.583-592
    • /
    • 2017
  • A method is proposed for locating the heat sources from temperature observations, and its applicability is investigated for urban thermal environment simulations. A Lagrangian particle dispersion model, which is originally built for simulating the pollutants spread in the air, is exploited to identify the heat sources by transporting the Lagrangian heat particles backwards in time. The urban wind fields are estimated using a diagnostic meteorological model incorporating the morphological model for the urban canopy. The proposed method is tested for the horizontally homogeneous urban boundary layer problems. The effects of the turbulence levels and the computational time on the simulation are investigated.

Analysis of the Correlation between Urban High Temperature Phenomenon and Air Pollution during Summer in Daegu

  • An, Eun-Ji;Kim, Hae-Dong
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.831-840
    • /
    • 2019
  • Recently, summer high temperature events caused by climate change and urban heat island phenomenon have become a serious social problem around the world. Urban areas have low albedo and huge heat storage, resulting in higher temperatures and longer lasting characteristics. To effectively consider the urban heat island measures, it is important to quantitatively grasp the impact of urban high temperatures on the society. Until now, the study of urban heat island phenomenon had been carried out focusing only on the effects of urban high temperature on human health (such as heat stroke and sleep disturbance). In this study, we focus on the effect of urban heat island phenomenon on air pollution. In particular, the relationship between high temperature phenomena in urban areas during summer and the concentration of photochemical oxidant is investigated. High concentrations of ozone during summer are confirmed to coincide with a day when the causative substances (NO2,VOCs) are high in urban areas during the early morning hours. Further, it is noted that the night urban heat island intensity is large.. Finally, although the concentration of other air pollutants has been decreasing in the long term, the concentration of photochemical oxidant gradually increases in Daegu.

기후변화가 반영된 도시 열환경 시뮬레이션 모델의 연구 (A Study on the Urban Heat Simulation Model Incorporating the Climate Changes)

  • 강종화;김완수;윤정임;이주성;김석철
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.697-707
    • /
    • 2018
  • A fast running model comprising the climate change effects is proposed for urban heat environment simulations so as to be used in urban heat island studies and/or the urban planning practices. By combining Hot City Model, a high resolution urban temperature prediction model utilizing the Lagrangian particle tracing technique, and the numerical weather simulation data which are constructed up to year of 2100 under the climate change scenarios, an efficient model is constructed for simulating the future urban heat environments. It is applicable to whole city as well as to a small block area of an urban region, with the computation time being relatively short, requiring the practically manageable amount of the computational resources. The heat environments of the entire metropolitan Seoul area in South Korea are investigated with the aid of the model for the present time and for the future. The results showed that the urban temperature gradually increase up to a significant level in the future. The possible effects of green roofs on the buildings are also studied, and we observe that green roofs don't lower the urban temperature efficiently while making the temperature fields become more homogeneous.

서울지역의 도시열섬현상과 대기오염도의 관계에 관한 연구 (A Study on the Relation of Urban Heat Island and Air Pollution in Seoul Area)

  • 장영기;김정욱
    • 한국대기환경학회지
    • /
    • 제7권1호
    • /
    • pp.49-53
    • /
    • 1991
  • Relations of urban heat island and air pollution are analyzed by using $SO_2$ concentration data (winter season in 1985) from 10 sites of Seoul area and differences of wind speed and air temperature in urban and rural area. Urban heat island is developed when daily mean wind speed at urban site is lower than 1.5m/sec or in the interval of 3.0 $\sim$ 3.5m/sec. When differences between urban and rural air temperature is greater than the overall average of those differences, $SO_2$ concentrations of those above-average differences are 1.3 $\sim$ 1.8 times higher than those of below-average differences. The trends are shown obviously at north-eastern area of Seoul (Gilum Dong, Ssangmun Dong, Myeonmog Dong). When intensity of Urban Heat Island is weak, $SO_2$ concentration was reduced in propotion to a rise of wind speed. But $SO_2$ concentration is on the partial increase in spite of a rise of wind speed when intensity of urban heat island is strong.

  • PDF

분포형 수문모형을 이용한 도시지역 옥상녹화에 따른 물 및 열순환 영향 평가 (Assessing the Effect of Water and Heat Cycle of Green Roof System using Distributed Hydrological Model in Urban Area)

  • 장철희;김현준;김연미;남미아
    • KIEAE Journal
    • /
    • 제13권4호
    • /
    • pp.33-41
    • /
    • 2013
  • The impervious area on the surface of urban area has been increased as buildings and artificial land cover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural ecosystem. There arise the environmental problems to urban area including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate flood discharge and heat reduction effect according to the green roof system and to quantify effect by analyzing through simulation water and heat cycle before and after green roof system. For the analysis, Distributed hydrologic model, WEP (Water and Energy transfer Processes) and WEP+ model were used. WEP was developed by Dr. Jia, the Public Works Research Institute in Japan (Jia et al., 2005), which can simulate water and heat cycle of an urban area with complex land uses including calculation of spatial and temporal distributions of water and heat cycle components. The WEP+ is a visualization and analysis system for the WEP model developed by Korea Institute of Construction Technology (KICT).

지표면 변화와 인공열이 바람장에 미치는 영향에 관한 수치 시뮬레이션 (Numerical Simulation of Effect of Urban Land-use Type and Anthropogenic Heat on Wind Field)

  • 홍정혜;김유근
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.511-520
    • /
    • 2000
  • The urban atmosphere is characterized by th difference in surface and atmospheric environment between urban and more natural area. To investigate th climatic effect of land use type and anthropogenic heat of urban on wind field, numerical simulations were carried out under typical summer synoptic condition. The wind model PNU_MCM(Pusan National University Mesoscale Circulation Model) is based on the three-dimensional Boussinesq equations, taking into account the hydrostatic assumption . Since lane-use differs over every subdivision on Pusan the surface energy budget model includes sub0grid parameterization scheme which can calculate the total heat flux over a grid surface composed of different surfaces. The simulated surface wind agrees well with the observed value, and average over 6 days which represent typical summer lan-sea breeze days, August 1998, i.e. negligible gradient winds and almost clear skies. Urbanization makes sea-breeze enhance at day and reduce land-breeze at night. The results show that contribution of land-use type is much larger than that of anthropogenic heat in Pusan.

  • PDF

서울시 도시열섬현상 지역의 물리적 환경과 인구 및 사회경제적 특성 탐색 (Exploring Physical Environments, Demographic and Socioeconomic Characteristics of Urban Heat Island Effect Areas in Seoul, Korea)

  • 조혜민;하재현;이수기
    • 지역연구
    • /
    • 제35권4호
    • /
    • pp.61-73
    • /
    • 2019
  • 도시의 개발과 고밀화는 도시공간의 기온이 주변지역보다 높아지는 도시열섬(Urban Heat Island)현상의 원인이 되고 있으며, 도시열섬현상은 기후변화와 함께 그 강도가 증가하고 있다. 이와 더불어 여름철 도시의 대기온도가 상승할 때 소득이 낮은 계층, 고령인구, 건강에 문제가 있는 사회적 취약계층은 높아진 열환경에 대처할 수 있는 능력이 부족하다. 따라서 본 연구의 목적은 서울시의 열섬지역을 공간통계 기법인 Hotspot 분석을 통해 도출하고, 로지스틱 회귀분석을 활용하여 열섬지역의 물리적 환경과 인구 및 사회경제적 특성을 분석하는 것이다. 서울시 423개 행정동을 대상으로 동별 평균 대기온도를 이용하여 도시열섬 Hotspot 분석을 실행한 결과, 서울시 중구, 종로구, 용산구, 영등포구에서 도시열섬 지역이 집중적으로 분포하는 것을 확인하였다. 로지스틱 회귀분석을 통해 열섬지역의 물리적 환경 특성을 분석한 결과, 주거시설 연면적 비율, 상업시설 연면적 비율, 용적률, 불투수면 비율, 정규화식생지수(NDVI)가 열섬지역에 영향을 미치는 유의한 변수로 나타났다. 또한, 열섬지역의 인구 및 사회·경제적 특성을 고려한 열환경 취약지역을 분석한 결과, 기초생활수급자 비율, 독거노인 비율, 기초생활수급을 받는 독거노인 비율 등이 유의한 변수로 나타났다. 본 연구의 결과는 도시열섬현상에 영향을 미치는 물리적 환경변수를 도출하고 사회적 취약계층의 공간적 분포와 도시열섬지역이 중첩되어 있는 지역을 판별함으로써 향후 취약계층을 고려한 도시 열환경 설계와 정책 개발에 있어 시사점을 제공할 것으로 기대한다.

도로 포장 기술 개선에 따른 대기 경계층의 열 변화에 관한 연구 (A Study on the Impact of an Improved Road Pavement Technology on the Thermal Structure of Atmospheric Boundary Layer)

  • 이순환;김인수;김해동
    • 한국대기환경학회지
    • /
    • 제24권5호
    • /
    • pp.551-561
    • /
    • 2008
  • In order to clarify the impact of anti-heat insulation pavement on the thermal structure of atmospheric boundary layer, field experiments and numerical simulations were carried out. Field experiment with various pavements were also conducted for 24 hours from 09LST 19 June 2007. And numerical experiment mainly focused on the impact of albedo variation, which is strongly associated with thermal characteristics of insulated pavement materials, on the temporal variation of planterly boundary layer. Numerical model used in this study is one dimension model with Planterly Boundary Layer developed by Oregon State University (OSUPBL). Because anti-heat insulation pavement material shows higher albedo value, not only maximum surface temperature but also maximum surface air temperature on anti-heat insulation pavement is lower than that on asphalt. The maximum value of surface temperature only reach on $49.5^{\circ}C$. As results of numerical simulations, surface sensible heat flux and the height of mixing layer are also influenced by the values of albedo. Therefore the characteristics of urban surface material and its impact on atmosphere should be clarified before the urban planning including improvement of urban heat environment and air quality.