• Title/Summary/Keyword: Urban environmental problem

Search Result 298, Processing Time 0.025 seconds

A Study on the Characteristics of Interface Space through Architecture Surface (건축 외피에 의한 인터페이스 공간 특성에 관한 연구)

  • Hwang, Sun-Ah;Kim, Jong-Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.509-521
    • /
    • 2009
  • In modern society the architecture surface involves a lot of meaning other than having simple physical functions. The interface space generated by the surface characteristics among those becomes to have many significances in modern society, and plays a role of symbolic space of a city. The interface space is threshold space that connects two separate spaces and revitalize its states. Nowadays, people have many chances to communicate each other through the interface space and also settle urban problems caused by spacial and functional discontinuity through the interface space. However, the interface space in Korea could not be built up well due to rapid growth of cities, and a lot of different natures in space and viewpoint have been appeared accordingly, which gives rise to a problem of the discontinuity of urban spaces. Therefore, this study aims at the research on the characteristics of interface space through architecture surface composing the major factor of a city; architecture integument in Nam-po Dong, Jung Gu, Busan City as the object of the study.

A Study on the Plan of Plant State for Improvement of Stream-ecosystem - in Case of Chungrang Stream (자연형 하천 생태계를 위한 식생개선 방안 연구 -중랑천을 사례로)

  • Ann, Geun-Young;Lee, Eun-Heui
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.2
    • /
    • pp.35-46
    • /
    • 2000
  • Environmental pollution has become more and more serious in urban areas since industrialization as most streams and rivers were developed heavily because of economic opportunism. Recently river restoration techniques, applied in advanced countries, have been introduced to Korea. But the application of river restoration techniques developed in advanced countries, has a lot of limitations in respect of economic loss during construction, suitability for the domestic situation and the problem of flood control. The method of minimizing the problems must take into consideration these issues, including economic considerations. So from these points of view this study intends to plan ecological river restoration and to create a nature friendly river in the case of the Chungrang river. The subject site is the upper part of Chungrang river, from the Nokchun bridge to Sang-kye bridge, where the ecosystem is well preserved in comparison with other parts of the river. The subject site is divided into 10 sections for plant state investigation. The result of plant-state investigation showed pioneer water plants such as Persicaria thunbergii, Oenanthe jaranica, Rumex crispus. appeared very often. On the basis of the existing plant state, this study has planned an appropriate plant state for the river and has planned for bank protection using a method of construction, which is suitable for natural river. In this study, first of all, it is intended to investigate the plant growth state of Chungrang river and try to plan a particular ecosystem for the river for the purpose of the revival of the natural river.

  • PDF

Citizen's Attitude to Environmental Facilities (환경기초시설에 대한 시민 의식 조사)

  • Chung, Jae-Chun;Chung, Won-Tae;Tak, Seung-Je;Kang, Hun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.97-102
    • /
    • 1995
  • A questionare survey was performed to investigate the citizen's attitude concerning waste treatment facilities. Most people recognized the seriousness of the waste treatment problem and think that more composting facilities should be built. People dislike most the landfill facility, followed by the nightsoil treatment facility, the incineration facility and the composting facility. Most people answered that the disirable distance from their house to the treatment facility should be farther than 4km for the landfill facility, farther than 2km for incineration and composting facilities and farther than 1km for the wastewater treatment plant. Most people want moving cost+land price+inconvience suffering cost (amount equal to the land prize+building prize) for their retrieval. About 30% of people answered that they will not accept any waste treatment facility even though it is perfect.

  • PDF

Comparison of Commuters' PM10 Exposure Using Different Transportation Modes of Bus and Bicycle (버스와 자전거를 이용한 통근 수단에 따른 PM10 노출량의 비교)

  • Kim, Won;Kim, Sung-Yeon;Lee, Ji-Yeon;Kim, Seong-Keun;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.447-453
    • /
    • 2009
  • Cycling has been lately recommended as an alternative commuting mode because it is believed to be good for health and the environment. However, the exposure to environmental pollutants, such as fine particulates, could be a potential problem for cycling in urban environments. In this study, we compared commuters' $PM_{10}$ exposure using the different transportation modes of bicycle and bus. When a bicycle was used as a commuting mode, the additional $PM_{10}$ exposure due to transportation was about 3.5 times higher than that when using a bus. The difference of additional $PM_{10}$ exposures by cycling and bus was statistically significant (p<0.01). The $PM_{10}$ exposure during cycling was significantly correlated with atmospheric $PM_{10}$ concentration (r=0.98, p<0.01) and its correlation coefficient was higher than that of bus (r=0.55, p<0.05). The results of this study demonstrated that the main reasons of higher $PM_{10}$ exposure when using the bicycle as the mode of transport were its vicinity to road traffic and routes that were unavoidably close to road traffic. Bicycle commuting along the road side may not be good for health. Exclusive bicycle lanes away from road traffic are recommended.

Estimation of the Flood Area Using Multi-temporal RADARSAT SAR Imagery

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Yoo, Hwan-Hee;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.37-46
    • /
    • 2002
  • Accurate classification of water area is an preliminary step to accurately analyze the flooded area and damages caused by flood. This step is especially useful for monitoring the region where annually repeating flood is a problem. The accurate estimation of flooded area can ultimately be utilized as a primary source of information for the policy decision. Although SAR (Synthetic Aperture Radar) imagery with its own energy source is sensitive to the water area, its shadow effect similar to the reflectance signature of the water area should be carefully checked before accurate classification. Especially when we want to identify small flood area with mountainous environment, the step for removing shadow effect turns out to be essential in order to accurately classify the water area from the SAR imagery. In this paper, the flood area was classified and monitored using multi-temporal RADARSAT SAR images of Ok-Chun and Bo-Eun located in Chung-Book Province taken in 12th (during the flood) and 19th (after the flood) of August, 1998. We applied several steps of geometric and radiometric calculations to the SAR imagery. First we reduced the speckle noise of two SAR images and then calculated the radar backscattering coefficient $(\sigma^0)$. After that we performed the ortho-rectification via satellite orbit modeling developed in this study using the ephemeris information of the satellite images and ground control points. We also corrected radiometric distortion caused by the terrain relief. Finally, the water area was identified from two images and the flood area is calculated accordingly. The identified flood area is analyzed by overlapping with the existing land use map.

  • PDF

Applicability of Huff Model & ABM Method for Discharge Capacity of Sewer Pipe (하수관거 통수능 해석을 위한 Huff 모형과 ABM 법의 적용성 분석)

  • Hyun, Inhwan;Jeon, SeungHui;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.229-237
    • /
    • 2022
  • The sewer capacity design have been based on the Huff model or the rational equation in South Korea and often failed to determine optimal capacity, resulting in frequent urban flooding or over-sizing. A time distribution of rainfall (i.e., Huff or ABM method) could be used instead of a rainfall hyetograph obtained from statistical analysis of previous rainfalls. In this study, the Huff method and the ABM method, which predict the time distribution of rain intensity, which are widely used to calculate sewage pipe drainage capacity using the SWMM, were compared with the standard rainfall intensity hyetograph of Seoul. If the rainfall duration was 30 minutes to 180 minutes, the rainfall intensity value calculated by the Huff model tended to be less than the rainfall intensity value of the standard rainfall intensity in the initial 5-10 minutes. As a result, more than 10% to 30% of under-design would be made. In addition, the rainfall intensity value calculated by the Huff model from the section excluding the initial 5-10 minutes of rainfall to the rainfall duration was calculated larger than the value using the standard rainfall intensity equation, which would result in an over-design of 10% to 30%. In the case of a relatively long rainfall duration of 360 minutes (6 hours) to 1,440 minutes (24 hours), it showed an lower rainfall intensity of 60 to 90% in the early stages of rainfall, but the problem of under-design had been solved as the rainfall duration time had elapsed. On the other hand, in the alternating block method (ABM) method, it was found that the rainfall intensity at the entire period at each assumed rainfall duration accurately matched the standard rainfall intensity hyetograph of Seoul.

An Optimal Sewer Layout Model to Reduce Urban Inundation (도시침수 저감을 위한 최적 우수관망 설계 모형)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.777-786
    • /
    • 2011
  • In the previous researches for storm sewer design, the flow path, pipe diameter and pipe slope were determined to minimize the construction cost. But in the sewer networks, the flows can be changed according to flow path. The current optimal sewer layout models have been focussed on satisfying the design inflow for sewer designs, whereas the models did not consider the occurrences of urban inundation from excessive rainfall events. However, in this research, the sewer networks are determined considering the superposition effect to reduce the inundation risk by controlling and distributing the inflows in sewer pipes. Then, urban inundation can be reduced for excessive rainfall events. An Optimal Sewer Layout Model (OSLM) was developed to control and distribute the inflows in sewer networks and reduce urban inundation. The OSLM uses GA (Genetic Algorithm) to solve the optimal problem for sewer network design and SWMM (Storm Water Management Model) to hydraulic analysis. This model was applied to Hagye basin with 44 ha. As the applied results, in the optimal sewer network, the peak outflow at outlet was reduced to 7.1% for the design rainfall event with 30 minutes rainfall duration versus that of current sewer network, and the inundation occurrence was reduced to 24.2% for the rainfall event with 20 years frequency and 1 hour duration.

A Study on the Runoff Reduction According to the Calculation Method of the LID Scale Considering the Land Use Area and the Application of Stormwater Storage Basin (토지이용면적을 고려한 LID 규모 산정 및 우수저류지 적용에 따른 유출저감 연구)

  • Kim, Byung Sung;Kim, Jea Moon;Kim, Seong Su;Shin, Gang Wook;Lee, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.229-235
    • /
    • 2021
  • Globally, due to climate change and urbanization, problems with water cycle destruction in urban areas frequently occur. In order to solve this problem, LID technique is being actively conducted the application in urban and research. In this study, some areas of the new city located in Busan was constructed using a widely used SWMM model to verify the effectiveness of the LID technique. This is to present a plan to maximize the efficiency of urban water cycle of the stormwater management target figure and the LID scale calculation method. In addition, the efficiency of runoff reduction using stormwater storage basin was analyzed in urban development projects. By calculating the scale of customized LID for each sub basin, the amount of runoff and peak runoff after LID application was reduced by 86.8 % and 69.5 %, respectively. Depending on the application of the stormwater storage basin, the reduction effect of peak runoff from 0.5 m3/s to 4.9 m3/s and delay effect of 8 minutes to 10 minutes was shown.

Study on Derivation of Fourth-Order GIUH and Revision of Initial State Probability (4차 하천에서의 GIUH의 유도 및 초기확률의 보정에 관한 연구)

  • Ham, Dae-Heon;Joo, Jin-Gul;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.229-239
    • /
    • 2008
  • This study is to derive the fourth-order Geomorphologic Instantaneous Unit Hydrograph (GIUH), driven for only third-order basin, for the application of GIUH to various types of basin. The second, third, and fourth order GIUHs were compared for various topographical conditions. The results showed lower peak runoff and later peak time in GIUH with higher stream order. Initial state probability was estimated from a function of geomorphologic parameters such as area ratio and bifurcation ratio for the application of GIUH. However, initial state probabilities and early parts of the GIUHs have negative values for many basins due to the inherent errors in the parameters. Initial state probability was calculated by area ratio of direct drainage using ArcView GIS 3.2 model to solve the problem. GIUHs were estimated for three basins, Sanganmi, Byeongcheon, and Sangye, using the above suggested method, and the results showed that the method is free of the problem.

Sustainable Livestock Production in Hill and Woodland (산지에서의 환경친화형 조사료변산과 이용)

  • 김태환;성경일;김병완
    • Proceedings of the Korean Society of Grassland Science Conference
    • /
    • 2002.09b
    • /
    • pp.131-156
    • /
    • 2002
  • Although economically viable, the livestock industry is currently facing a number of challenging environmental problems and highly complex social issues, many of which are related to its size and geographically concentrated nature. Increased emphasis on environmental quality has also placed new demands on livestock producers to ensure that their production practices are in harmony with natural environment. In terms of sustainable agricultural systems, ruminants have served and will continue to serve a valuable role. They are particularly useful in converting vast renewable resources from rangeland, pasture, and crop residues or other by-product into food edible for human. With ruminants, land that is too poor or too erodable to cultivate becomes productive. Also, nutrients in by-products are utilized and do not become a waste-disposal problem. In Korea, however, native and dairy cattle production is not consistent with the advantageous roles of ruminant livestock in sustainable agricultural system because imported feed grains become the main basis for cattle raising. At present the ruminant livestock producers are heavily concentrated in and around the urban areas. About 75% of all the nation's cattle herds are kept on the outskirts of urban areas. As a result, the amount of pasture and forage land available per head of cattle is generally small. Furthermore, animals are raised in a cattle shed with high density. This situation is rather unfavorable for the national economic and environmental points of view As nation income increased, the demand for livestock products grew at an unforeseeable pace. But the pasture area involving in current utilization is tended to decrease during recent years. Based on the above figures more than 250,000 ha of pasture ought to be available for the present herd of cattle. It is obvious that these needs can scarcely be met with arable lands. Lands area for the establishment of new grassland have to be found in the hills and mountains which have not yet been used for crop framing or livestock. The development of extensive grasslands in the hill and woodland areas is now a declared aim. The starting point of the present work is the lack of knowledge of forage production and utilization in hill pasture and woodland in spite of indispensable necessity for livestock production in Korea. The importance of pastoral system in hill region and woodland is particularly emphasized in a standpoint of sustainable livestock production. Main chapter comprises the principle and techniques applicable for improving the utilization of hill pasture and woodland. We finally discussed the problems to solve and future works for a successful livestock production in hill and mountainous area in Korea.

  • PDF