• Title/Summary/Keyword: Urban Spatial Big Data

Search Result 57, Processing Time 0.026 seconds

Where and Why? A Novel Approach for Prioritizing Implementation Points of Public CCTVs using Urban Big Data

  • Ji Hye Park;Daehwan Kim;Keon Chul Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.97-106
    • /
    • 2023
  • Citizens' demand for public CCTVs continues to rise, along with an increase in variouscrimes and social problems in cities. In line with the needs of citizens, the Seoul Metropolitan Government began installing CCTV cameras in 2010, and the number of new installations has increased by over 10% each year. As the large surveillance system represents a substantial budget item for the city, decision-making on location selection should be guided by reasonable standards. The purpose of this study is to improve the existing related models(such as public CCTV priority location analysis manuals) to establish the methodology foranalyzing priority regions ofSeoul-type public CCTVs and propose new mid- to long-term installation goals. Additionally, using the improved methodology, we determine the CCTV priority status of 25 autonomous districts across Seoul and calculate the goals. Through its results, this study suggests improvements to existing models by addressing their limitations, such as the sustainability of input data, the conversion of existing general-purpose models to urban models, and the expansion of basic local government-level models to metropolitan government levels. The results can also be applied to other metropolitan areas and are used by the Seoul Metropolitan Government in its CCTV operation policy

Changes in Measuring Methods of Walking Behavior and the Potentials of Mobile Big Data in Recent Walkability Researches (보행행태조사방법론의 변화와 모바일 빅데이터의 가능성 진단 연구 - 보행환경 분석연구 최근 사례를 중심으로 -)

  • Kim, Hyunju;Park, So-Hyun;Lee, Sunjae
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to evaluate the walking behavior analysis methodology used in the previous studies, paying attention to the demand for empirical data collecting for urban and neighborhood planning. The preceding researches are divided into (1)Recording, (2) Surveys, (3)Statistical data, (4)Global positioning system (GPS) devices, and (5)Mobile Big Data analysis. Next, we analyze the precedent research and identify the changes of the walkability research. (1)being required empirical data on the actual walking and moving patterns of people, (2)beginning to be measured micro-walking behaviors such as actual route, walking facilities, detour, walking area. In addition, according to the trend of research, it is analyzed that the use of GPS device and the mobile big data are newly emerged. Finally, we analyze pedestrian data based on mobile big data in terms of 'application' and distinguishing it from existing survey methodology. We present the possibility of mobile big data. (1)Improvement of human, temporal and spatial constraints of data collection, (2)Improvement of inaccuracy of collected data, (3)Improvement of subjective intervention in data collection and preprocessing, (4)Expandability of walking environment research.

Development and Application of CCTV Priority Installation Index using Urban Spatial Big Data (도시공간빅데이터를 활용한 CCTV 우선설치지수 개발 및 시범적용)

  • Hye-Lim KIM;Tae-Heon MOON;Sun-Young HEO
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.19-33
    • /
    • 2024
  • CCTV for crime prevention is expanding; however, due to the absence of guidelines for determining installation locations, CCTV is being installed in locations unrelated to areas with frequent crime occurrences. In this study, we developed a CCTV Priority Installation Index and applied it in a case study area. The index consists of crime vulnerability and surveillance vulnerability indexes, calculated using machine learning algorithms to predict crime incident counts per grid and the proportion of unmonitored area per grid. We tested the index in a pilot area and found that utilizing the Viewshed function in CCTV visibility analysis resolved the problem of overestimating surveillance area. Furthermore, applying the index to determine CCTV installation locations effectively improved surveillance coverage. Therefore, the CCTV Priority Installation Index can be utilized as an effective decision-making tool for establishing smart and safe cities.

Analyzing Influence Factors of Foodservice Sales by Rebuilding Spatial Data : Focusing on the Conversion of Aggregation Units of Heterogeneous Spatial Data (공간 데이터 재구축을 통한 음식업종 매출액 영향 요인 분석 : 이종 공간 데이터의 집계단위 변환을 중심으로)

  • Noh, Eunbin;Lee, Sang-Kyeong;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.581-590
    • /
    • 2017
  • This study analyzes the effect of floating population, locational characteristics and spatial autocorrelation on foodservice sales using big data provided by the Seoul Institute. Although big data provided by public sector is growing recently, research difficulties are occurred due to the difference of aggregation units of data. In this study, the aggregation unit of a dependent variable, sales of foodservice is SKT unit but those of independent variables are various, which are provided as the aggregation unit of Korea National Statistical Office, administration dong unit and point. To overcome this problem, we convert all data to the SKT aggregation unit. The spatial error model, SEM is used for analysing spatial autocorrelation. Floating population, the number of nearby workers, and the area of aggregation unit effect positively on foodservice sales. In addition, the sales of Jung-gu, Yeongdeungpo-gu and Songpa-gu are less than that of Gangnam-gu. This study provides implications for further study by showing the usefulness and limitations of converting aggregation units of heterogeneous spatial data.

Spatial Analysis by Matching Methods using Elevation data of Aerophoto and LIDAR (항공사진과 LIDAR 표고 데이터의 매칭 기법에 의한 공간정보 분석 연구)

  • Yeon, sang-ho;Lee, Young-wook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.449-452
    • /
    • 2008
  • The building heights of big cities which charged with most space are 3-D information as relative vertical distance from ground control points, but they didn't know the heights using contour with maps as lose of skyline or building heights for downtown, practically continuously developed of many technology methods for implementation of 3-D spatial earth. So, For the view as stereos of variety earth form generated 3-D spatial and made terrain perspective map, 3-D simulated of regional and urban space as aviation images. In this papers, it composited geospatial informations and images by DEM generation, and developed and presented for techniques overlay of CAD data and photos captured at our surroundings uses. Particularly, The airborne LiDAR surveying which are very interesting trend have laser scanning sensor and determine the ground heights through detecting angle and range to the grounds, and then designated 3-D spatial composite and simulation from urban areas. Therefore in this papers are suggested ease selections on the users situation by compare as various simulations that its generation of 3-D spatial image by collective for downtown space and urban sub, and the implementation methods for more accurate, more select for the best images.

  • PDF

Analysis of Relation Between Criminal Types and Spatial Characteristics in Urban Areas (도심지역의 범죄 종류와 공간적 특성 관계분석)

  • Cha, Gyeong Hyeon;Kim, Kyung Ho;Son, Ki Jun;Kim, Sang Ji;Lee, Dong Chang;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • In this paper, we analyzed current states and spatial characteristics of crime occurring in A city of Colombia using big data of crime. The analysis draws on the crime statistics of Colombia National Police Agency from 2013 January to September. We also investigated spatial autocorrelation of crime using global and local Moran's Index. Spatial autocorrelation analysis shows significant spatial autocorrelation in the high frequency of crime. Global Moran's I analysis indicates that there are statistically significant value of crime area. Using local Moran's Index analysis, we also implement Local Indicators of Spatial Association(LISA) map and hot spot analysis helps us identify crime distribution.

Analysis of living population characteristics to measure urban vitality - Focusing on mobile big data - (도시활력 측정을 위한 생활인구 특성 분석 - 이동통신 빅데이터를 중심으로 -)

  • Yoko Kamata;Kwang Woo NAM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.173-187
    • /
    • 2023
  • In an era of population decline, depopulated regions facing challenges in attracting inbound population migration must enhance urban vitality through the attraction of living populations. This study focuses on Busan, a city experiencing population decline, comparing the spatiotemporal distribution characteristics of registered residents and living populations in various administrative districts (Eup-Myeon-Dong) using mobile communication big data. Administrative districts are typified based on population change patterns, and regional characteristics are analyzed using indicators related to urban decline and vitality. Spatiotemporal distribution analysis reveals generally similar density patterns between registered residents and living populations; however, a distinctive feature is observed in the city center areas where the density of registered residents is low, while the density of living populations is high. Divergent trends in spatial patterns of change between registered residents and living populations show clusters of registered population decline in low-density areas and clusters of living population decline in high-density areas. Areas adjacent to declining living populations exhibit large clusters of population changes, indicating a spillover effect from high-density to neighboring areas. Typification results reveal that, even in areas with a decline in registered residents, there is active population influx due to commuting or visiting. These areas sustain an increase in the number of businesses, confirming the presence of industrial and economic growth. However, approximately 47% of administrative districts in Busan are experiencing a decline in both registered residents and living populations, indicating ongoing regional decline. Urgent measures are needed for enhancing urban vitality. The study emphasizes the necessity of utilizing living population data as an urban planning indicator, considering the increasing limit distance of urban activities and growing interregional interaction due to advancements in transportation and communication.

A Study on the Change of Smart City's Issues and Perception : Focus on News, Blog, and Twitter (스마트도시의 이슈와 인식변화에 관한 연구 : 뉴스, 블로그, 트위터 자료를 중심으로)

  • Jang, Hwan-Young
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.67-82
    • /
    • 2019
  • The purpose of this study is to analyze the issues and perceptions of smart cities. First, based on the big data analysis platform, big data analysis on smart cities were conducted to derive keywords by year, word cloud, and frequency of generation of smart city keywords by time. Second, trend and flow by area were analyzed by reclassifying major keywords by year based on meta-keywords. Third, emotional recognition flow for smart cities and major emotional keywords were derived. While U-City in the past is mostly centered on creating infrastructure for new towns, recent smart cities are focusing on sustainable urban construction led by citizens, according to the analysis. In addition, it was analyzed that while infrastructure, service, and technology were emphasized in the past, management and methodology were emphasized recently, and positive perception of smart cities was growing. The study could be used as basic data for the past, present and future of smart cities in Korea at a time when smart city services are being built across the country.

A Comprehensive Framework for Estimating Pedestrian OD Matrix Using Spatial Information and Integrated Smart Card Data (공간정보와 통합 스마트카드 자료를 활용한 도시철도 역사 보행 기종점 분석 기법 개발)

  • JEONG, Eunbi;YOU, Soyoung Iris;LEE, Jun;KIM, Kyoungtae
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.5
    • /
    • pp.409-422
    • /
    • 2017
  • TOD (Transit-Oriented Development) is one of the urban structure concentrated on the multifunctional space/district with public transportation system, which is introduced for maintaining sustainable future cities. With such trends, the project of building complex transferring centers located at a urban railway station has widely been spreaded and a comprehensive and systematic analytical framework is required to clarify and readily understand the complicated procedure of estimation with the large scale of the project. By doing so, this study is to develop a comprehensive analytical framework for estimating a pedestrian OD matrix using a spatial information and an integrated smart card data, which is so called a data depository and it has been applied to the Samseong station for the model validation. The proposed analytical framework contributes on providing a chance to possibly extend with digitalized and automated data collection technologies and a BigData mining methods.

Crime Incident Prediction Model based on Bayesian Probability (베이지안 확률 기반 범죄위험지역 예측 모델 개발)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.89-101
    • /
    • 2017
  • Crime occurs differently based on not only place locations and building uses but also the characteristics of the people who use the place and the spatial structures of the buildings and locations. Therefore, if spatial big data, which contain spatial and regional properties, can be utilized, proper crime prevention measures can be enacted. Recently, with the advent of big data and the revolutionary intelligent information era, predictive policing has emerged as a new paradigm for police activities. Based on 7420 actual crime incidents occurring over three years in a typical provincial city, "J city," this study identified the areas in which crimes occurred and predicted risky areas. Spatial regression analysis was performed using spatial big data about only physical and environmental variables. Based on the results, using the street width, average number of building floors, building coverage ratio, the type of use of the first floor (Type II neighborhood living facility, commercial facility, pleasure use, or residential use), this study established a Crime Incident Prediction Model (CIPM) based on Bayesian probability theory. As a result, it was found that the model was suitable for crime prediction because the overlap analysis with the actual crime areas and the receiver operating characteristic curve (Roc curve), which evaluated the accuracy of the model, showed an area under the curve (AUC) value of 0.8. It was also found that a block where the commercial and entertainment facilities were concentrated, a block where the number of building floors is high, and a block where the commercial, entertainment, residential facilities are mixed are high-risk areas. This study provides a meaningful step forward to the development of a crime prediction model, unlike previous studies that explored the spatial distribution of crime and the factors influencing crime occurrence.