• Title/Summary/Keyword: Urban Heat island effect

Search Result 172, Processing Time 0.019 seconds

Analyzing Relationship between the Local Temperature, Land Usage and Land Coverage: Focused on the Integrated Model in the Microspace (토지이용 및 토지피복과 국지온도 간 관계 분석: 미시공간에서의 통합모델 구축을 중심으로)

  • Park, Yuna;Lee, Gunwon;Jeong, Yunnam;Kim, Seiyong
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.123-130
    • /
    • 2014
  • In order for effective heat island reduction policies to be proposed, this research made use of the land usage and land coverage and Temperature of cities, Coordinate axis data within 500 meters of nationwide automatic weather stations (478 points) in order to analyze the correlation of summertime temperatures through multiple regression analysis. This research also developed a model and empirically analyzed the urban heat island reduction effect of factors that affect regional temperatures. Heat islands cause environment deterioration and therefore can harm citizens' health, and also affects the city's metabolism process. Thus in order to restrain regional temperature rises the conclusion was drawn that consideration to increase forest areas on part of land usage planning is needed. Appropriate policy measures to regulate traffic related factors are also needed to restrain regional temperature rises. In order for future heat island reduction this research proposes a way to set up more effective policies and urban sustainability improvement strategies, and is significant in that it makes use of detailed data such as land usage and land coverage, Temperature of cities, Coordinate axis in analyses.

Analysis of Thermal Characteristics for Areas of Musim Stream in Cheongju City (청주시 무심천 주변의 열환경 특성 분석)

  • Park, Jin-Ki;Na, Sang-Il;Park, Jong-Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • The urban thermal environment can be an important index to detect heat island phenomena and manage it to improve urban life quality. Cheongju is a typical plain-city that main part has been formed and developed in lowland. The Mushim stream crosses the city from south to north. We reviewed the use of thermal remote sensing in stream around areas and the thermal environments, focusing primarily on the Urban Heat Island(UHI) effect. The purpose of this study is to determine the relationship between the stream nearby urban area and the stream cooling effect of UHI. The objectives are to determine the usefulness of KOMPSAT-2 bands MS3 and MS4 for vegetation cover mapping, and the usefulness of LANDSAT TM band 6 in identifying thermal environmental characteristics and UHI. Land Surface Temperatures (LST) are retrieved by single-channel algorithm to study the UHI from the 6th band (thermal infrared band) of LANDSAT TM images and thermal radiance thermometer based on remote sensing method and the LST distribution maps are accomplished according to the retrieval results. There is also comparison of satellite-derived and in situ measured temperature. The results indicated that the LST of urban center is higher than that of suburban area, the temperature of mountain and water are the lowest area, so it is clearly proved that there are obvious UHI effects by stream. The surface temperature distribution of Mushim stream is detected $2^{\circ}C$ lower than urban area.

Monitoring and spatio-temporal analysis of UHI effect for Mansa district of Punjab, India

  • Kaur, Rajveer;Pandey, Puneeta
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.19-39
    • /
    • 2020
  • Urban heat island (UHI) is one of the most important climatic implications of urbanization and thus a matter of key concern for environmentalists of the world in the twenty-first century. The relationship between climate and urbanization has been better understood with the introduction of thermal remote sensing. So, this study is an attempt to understand the influence of urbanization on local temperature for a small developing city. The study focuses on the investigation of intensity of atmospheric and surface urban heat island for a small urbanizing district of Punjab, India. Landsat 8 OLI/TIRS satellite data and field observations were used to examine the spatial pattern of surface and atmospheric UHI effect respectively, for the month of April, 2018. The satellite data has been used to cover the larger geographical area while field observations were taken for simultaneous and daily temperature measurements for different land use types. The significant influence of land use/land cover (LULC) patterns on UHI effect was analyzed using normalized built-up and vegetation indices (NDBI, NDVI) that were derived from remote sensing satellite data. The statistical analysis carried out for land surface temperature (LST) and LULC indicators displayed negative correlation for LST and NDVI while NDBI and LST exhibited positive correlation depicting attenuation in UHI effect by abundant vegetation. The comparison of remote sensing and in-situ observations were also carried out in the study. The research concluded in finding both nocturnal and daytime UHI effect based on diurnal air temperature observations. The study recommends the urgent need to explore and impose effective UHI mitigation measures for the sustainable urban growth.

Relationship between Urban Environment and Local Temperature for Managing Urban Heat Island Effect in Neighborhood (근린단위의 도시열섬관리를 위한 국지온도와 도시환경의 관계)

  • Lee, Gunwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.806-816
    • /
    • 2017
  • This study aims to offer effective policies for managing local temperatures and reducing the heat island effect by identifying elements that affect local temperatures. The three elements of natural environment, land use, and land coverage were first selected, and then control factors were applied, including season, weather, and measurement units for wind speed. In order to analyze these factors' relations to summer temperatures, an integrated model was developed, and an analysis was conducted of the urban heat island reduction effect of elements impacting local temperatures. The analysis used nationwide weather system (AWS) data from July and August 2007 and 2011-2016, land coverage data provided by the Ministry of Environment, and land use area data from local governments after rearranging them based upon their falling within a 500-meter radius ($0.79km^2$) of AWS measuring points. The study results show that the natural environment, land use, and land coverage all have a relation to changes in local temperatures. Natural elements have the greatest impact, and land use has the lowest. The results could provide basic data for establishing more effective policies to mitigate the heat island effect and strategies for enhancing the sustainability of cities.

An Evaluation of the Phenomenon of Heat-Island Effect by Multi-Criteria Methods (다항목 평가기법의 적응을 통한 열섬현상의 평가)

  • Lee Jung-Min;Do Hu-Jo;Ra Jung-Hwa;Kim Soo-Bong;Jung Eung-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1005-1014
    • /
    • 2005
  • The purpose of this research was to present multi-criteria which were related to the heat island and find methods which decreased heat island affection on the ecological landscape planning. The results of this study were as follows. According to the analysis of surface temperatures, the first grade was the outside-city like a mountain and its temperature was less than $13.0^{\circ}C$. The fifth grade was the downtown, industrial area and its temperature was more than $26.9^{\circ}C$. Therefore, the result was seen the serious heat-island effect. The results of field survey, the closer to the first grade, the higher the value of green coverage. The closer to the fifth grade, the higher the value of impermeability surface, paving materials and colors. According to the correlation analysis, the temperature had high correlation with impermeability surface, paving materials and colors. According to the simple regression analysis, permeability surface, green coverage, topography, impermeability surface, paving materials f: colors, human impact related with surface temperatures. To plan for the decrease of Heat-Island Effect needed the extension of green space, decrease of impermeability surface. This research suggested data for urban green plan and decrease of heat island effect, but there was a limit to get the objective method for grade classification because of lacking in the basic data, the research of multi-criteria will be accomplished continuously.

LEED Certification and Its Effectiveness on Urban Heat Island Effect

  • Kim, Hwan-Yong;Gu, Dong-Hwan
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • The Leadership in Energy and Environmental Design (LEED) has provided abundant resources and guidelines for a new project to become a sustainable anchor in the neighborhood. Paired with a range of checklist, LEED has strong influence on the standards for a sustainable building, and it also has played an iconic role in energy-efficient architecture. However, it is still unclear as to whether or not an LEED certified building enhances environmental benefits to its surroundings. If an LEED certification promises a baseline for an eco-friendly building, then a group of these structures should ensure significant environmental benefits to the society. This is the main question of this study, and the authors answer this hypothesis by examining the relationship of LEED certificates and their influence on outdoor temperature, especially in terms of urban heat island effect. The goal of this paper is to analyze the influence of the LEED certification on urban temperature as an indicator of sustainable architecture's regional interactions. If an LEED certificate is regarded as a strong contributor to a sustainable built environment, then a group of these certificates should result in greater benefits to society. To this extent, the authors question if there is any possible relationship between a large concentration of LEED certified sites and the temperature of their surroundings. To properly assess the research direction, Global Moran's I analysis, Local Moran's I analysis, and Hot Spot analysis are implemented to find the clustered areas of LEED certified buildings. For examining relationships between clustered area and its temperature, correlation efficients are calculated.

Quantitative Study on the Effect of the Building Composition on the Urban Thermal Environment (건물군 조건이 도시 열환경에 미치는 영향에 관한 정량적 검토)

  • Yeo, In-Ae;Yoko, Kamata;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.180-183
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate was analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1)The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. (2)Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature.

  • PDF

On the Impacts to the Loca l Climate Change of Urban Area due to the Vegetation Canopy (녹지대 분포가 도시 지역의 소기후에 미치는 영향)

  • 진병화;변희룡
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.101-108
    • /
    • 2000
  • Through numerical experiment using simplified OSU-1D PBL(Oregon State University One-Dimensional Planetary Boundary Layer) model and field measurement, we studied the impacts of vegetation canopy on heat island that was one of the characteristics of local climaate in urban area. it was found that if the fraction of vegetation was extended by 10 percent, the maximum air temperature and the maximum ground temperature can come down about 0.9${\circ}C$, 2.3${\circ}C$, respectively. Even though the field measurement was done under a little unstable atmospheric condition, the canopy air temperature was lower in the daytime, and higher at night than the air and ground temperature. This result suggests that the extention of vegetation canopy can bring about more pleasant local climate by causing the oasis, the shade and the blanket effect.

  • PDF

A Study on the Urban climate Mitigation Effects with Ecological Landscape Planning with reference to Namyang-Ju Walsanli Master-plan (환경생태계획의 도시기후 변화 대응 가능성 연구 -남양주 월산리 마스터플랜을 중심으로)

  • Moon, Soo Young;Kim, Hyun Soo;Lee, Kwang Bok
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.11-19
    • /
    • 2010
  • To meet with the nation's policy of Green Growth, local governments are rushing to propose an ecological urban development plan. And although various studies stress on the need of ecological planning to harmonize development with preservation, we have come to a point in which a quantitative evaluation of how much ecological planning contributes to the environmental load is needed. Through the increasing tendency of making plans based on the development of IT technology, capability of gathering environmental data and scientific instrument, studies on ecological planning's effect towards environmental load has recently begun. This study aims to perform a quantitative evaluation on how ecological planning mitigate urban heat island in the region of Namyang-ju Wallsanli. Three theories were used to mitigate urban heat island ; White network, Green network and Blue network. As a result, the atmosphere temperature was reduced the whole site $1.1^{\circ}C$ and partly $7^{\circ}C$ and the mean radiant temperature was reduced the whole site $1.1^{\circ}C$ and partly $8.7^{\circ}C$ on the modified ecological landscape plan in summer. The PMV index is 0~1 in ecologically modified landscape plan otherwise almost 3 in landscape plan. This study has its limits on the fact that results may differ from the actual plan as the study was performed based on the land use plan and building plan. However, what is important is that it shows a quantitative result of the effect that ecological planning has on surrounding environment and reducing environmental load.

Simulation Analysis of Urban Heat Island Mitigation of Green Area Types in Apartment Complexes (유형별 녹지 시뮬레이션을 통한 아파트 단지 내 도시열섬현상 저감효과 분석)

  • Ji, Eun-Ju;Kim, Da-Been;Kim, Yu-Gyeong;Lee, Jung-A
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.153-165
    • /
    • 2023
  • The purpose of this study is to propose effective scenarios for green areas in apartment complexes that can improve the connection between green spaces considering wind flow, thermal comfort, and mitigation of the urban heat island effect. The study site was an apartment complex in Godeok-dong, Gangdong-gu, Seoul, Korea. The site selection was based on comparing temperatures and discomfort index data collected from June to August 2020. Initially, the thermal and wind environment of the current site was analyzed. Based on the findings, three scenarios were proposed, taking into account both green patches and corridor elements: Scenario 1 (green patch), Scenario 2 (green corridor), and Scenario 3 (green patch & corridor). Subsequently, each scenario's wind speed, wind flow, and thermal comfort were analyzed using ENVI-met to compare their effectiveness in mitigating the urban heat island effect. The study results demonstrated that green patches contributed to increased wind speed and improved wind flow, leading to a reduction of 31..20% in the predicted mean vote (PMV) and 68.59% in the predicted percentage of dissatisfied (PET). On the other hand, green corridors facilitated the connection of wind paths and further increased wind speed compared to green patches. They proved to be more effective than green patches in mitigating the urban heat island, resulting in a reduction of 92.47% in PMV and 90.14% in PET. The combination of green patches and green corridors demonstrated the greatest increase in wind speed and strong connectivity within the apartment complex, resulting in a reduction of 95.75% in PMV and 95.35% in PET. However, patches in narrow areas were found to be more effective in improving thermal comfort than green corridors. Therefore, to effectively mitigate the urban heat island effect, enhancing green areas by incorporating green corridors in conjunction with green patches is recommended. This study can serve as fundamental data for planning green areas to mitigate future urban heat island effects in apartment complexes. Additionally, it can be considered a method to improve urban resilience in response to the challenges posed by the urban heat island effect.