• Title/Summary/Keyword: Urban Data

Search Result 5,543, Processing Time 0.039 seconds

Thermal Infrared Remote Sensing Data Utilization for Urban Heat Island and Urban Planning Studies

  • Lee, Hye Kyung
    • Journal of KIBIM
    • /
    • v.7 no.2
    • /
    • pp.36-43
    • /
    • 2017
  • Population growth and rapid urbanization has been converting large amounts of rural vegetation into urbanized areas. This human induced change has increased temperature in urban areas in comparison to adjacent rural regions. Various studies regarding to urban heat island have been conducted in different disciplines in order to analyze the environmental issue. Especially, different types of thermal infrared remote sensing data are applied to urban heat island research. This article reviews research focusing on thermal infrared remote sensing for urban heat island and urban planning studies. Seven studies of analyses for the relationships between urban heat island and other dependent indicators in urban planning discipline are reviewed. Despite of different types of thermal infrared remote sensing data, units of analysis, land use and land cover, and other dependent variable, each study results in meaningful outputs which can be implemented in urban planning strategies. As the application of thermal infrared remote sensing data is critical to measure urban heat island, it is important to understand its advantages and disadvantages for better analyses of urban heat island based on this review. Despite of its limitations - spatial resolution, overpass time, and revisiting cycle, it is meaningful to conduct future research on urban heat island with thermal infrared remote sensing data as well as its application to urban planning disciplines. Based on the results from this review, future research with remotely sensed data of urban heat island and urban planning could be modified and better results and mitigation strategies could be developed.

Analysis of the urban flood pattern using rainfall data and measurement flood data (강우사상과 침수 실측자료를 이용한 도시침수 양상 관계분석)

  • Moon, Hye Jin;Cho, Jae Woong;Kang, Ho Seon;Lee, Han Seung;Hwang, Jeong Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.95-95
    • /
    • 2020
  • Urban flooding occurs in the form of internal-water inundation on roads and lowlands due to heavy rainfall. Unlike in the case of rivers, inundation in urban areas there is lacking in research on predicting and warning through measurement data. In order to analyze urban flood patterns and prevent damage, it is necessary to analyze flooding measurement data for various rainfalls. In this study, the pattern of urban flooding caused by rainfall was analyzed by utilizing the urban flooding measuring sensor, which is being test-run in the flood prone zone for urban flooding management. For analysis, 2019 rainfall data, surface water depth data, and water level data of a street inlet (storm water pipeline) were used. The analysis showed that the amount of rainfall that causes flooding in the target area was identified, and the timing of inundation varies depending on the rainfall pattern. The results of the analysis can be used as verification data for the urban inundation limit rainfall under development. In addition, by using rainfall intensity and rainfall patterns that affect the flooding, it can be used as data for establishing rainfall criteria of urban flooding and predicting that may occur in the future.

  • PDF

Urban Big Data: Social Costs Analysis for Urban Planning with Crowd-sourced Mobile Sensing Data (도시 빅데이터: 모바일 센싱 데이터를 활용한 도시 계획을 위한 사회 비용 분석)

  • Shin, Dongyoun
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.106-114
    • /
    • 2023
  • In this study, we developed a method to quantify urban social costs using mobile sensing data, providing a novel approach to urban planning. By collecting and analyzing extensive mobile data over time, we transformed travel patterns into measurable social costs. Our findings highlight the effectiveness of big data in urban planning, revealing key correlations between transportation modes and their associated social costs. This research not only advances the use of mobile data in urban planning but also suggests new directions for future studies to enhance data collection and analysis methods.

Urban Sprawl prediction in 2030 using decision tree (의사결정나무를 활용한 2030년 도시 확장 예측)

  • Kim, Geun-Han;Choi, Hee-Sun;Kim, Dong-Beom;Jung, Yee-Rim;Jin, Dae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.125-135
    • /
    • 2020
  • The uncontrolled urban expansion causes various social, economic problems and natural/environmental problems. Therefore, it is necessary to forecast urban expansion by identifying various factors related to urban expansion. This study aims to forecast it using a decision tree that is widely used in various areas. The study used geographic data such as the area of use, geographical data like elevation and slope, the environmental conservation value assessment map, and population density data for 2006 and 2018. It extracted the new urban expansion areas by comparing the residential, industrial, and commercial zones of the zoning in 2006 and 2018 and derived a decision tree using the 2006 data as independent variables. It is intended to forecast urban expansion in 2030 by applying the data for 2018 to the derived decision tree. The analysis result confirmed that the distance from the green area, the elevation, the grade of the environmental conservation value assessment map, and the distance from the industrial area were important factors in forecasting the urban area expansion. The AUC of 0.95051 showed excellent explanatory power in the ROC analysis performed to verify the accuracy. However, the forecast of the urban area expansion for 2018 using the decision tree was 15,459.98㎢, which was significantly different from the actual urban area of 4,144.93㎢ for 2018. Since many regions use decision tree to forecast urban expansion, they can be useful for identifying which factors affect urban expansion, although they are not suitable for forecasting the expansion of urban region in detail. Identifying such important factors for urban expansion is expected to provide information that can be used in future land, urban, and environmental planning.

Aspects of Urban Heat Island and Its's Effect on Air Pollution Concentration in Chunchon Area (춘천지역 도시열섬의 특성과 대기질에 미치는 영향)

  • 이종범;김용국;김태우
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.303-309
    • /
    • 1993
  • An observational study of urban heat island was carried out using field data obatined during 6 days in May and August 1992 in Chunchon(population size 180.000). Air temperature was measured at 64 points along two sampling ruoutes by themisters attached to cars. Both routes cover urban and rural area and across the cneter of urban area. Continuous observation of air sonde was perfomed to clarify heights of nocturnal boundary layer(NBL) at the center of urban area. Surface meteorological observations were performed at both urban and rural sites. This study showed that heat island phenomena was obviously observed at the urbanized area during the night time with low wind speed. The average NBL heights exteded to about 10 meters, but varied with meteorological conditions. After sunset, the air temperature decreased with time at both sites and cooling rate at the urban site was greater than the rural site. The maximum heat island intensity was 7.5$^{\circ}$C at 21 LST, May 4. Usingthe two meteorological data sets obtained from urban and rural sites, the air pollutant concentration was calculated by Gaussian plume model which can obtain not only horizontal distribution of concentration but also vertical distribution. The result indicated that the concentration resulted from urban meteorological data set was lower than that from rural meteorological data set. It was also calculated that the air pollutant extended to higher level in urban meteorological data set than that in rural meteorological data set.

  • PDF

Big Data Based Urban Transportation Analysis for Smart Cities - Machine Learning Based Traffic Prediction by Using Urban Environment Data - (도시 빅데이터를 활용한 스마트시티의 교통 예측 모델 - 환경 데이터와의 상관관계 기계 학습을 통한 예측 모델의 구축 및 검증 -)

  • Jang, Sun-Young;Shin, Dong-Youn
    • Journal of KIBIM
    • /
    • v.8 no.3
    • /
    • pp.12-19
    • /
    • 2018
  • The research aims to find implications of machine learning and urban big data as a way to construct the flexible transportation network system of smart city by responding the urban context changes. This research deals with a problem that existing a bus headway model is difficult to respond urban situations in real-time. Therefore, utilizing the urban big data and machine learning prototyping tool in weathers, traffics, and bus statues, this research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data is gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is implemented by the machine learning tool (RapidMiner Studio) and conducted several tests for bus delays prediction according to specific circumstances. As a result, possibilities of transportation system are discussed for promoting the urban efficiency and the citizens' convenience by responding to urban conditions.

Application of Urban Computing to Explore Living Environment Characteristics in Seoul : Integration of S-Dot Sensor and Urban Data

  • Daehwan Kim;Woomin Nam;Keon Chul Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.65-76
    • /
    • 2023
  • This paper identifies the aspects of living environment elements (PM2.5, PM10, Noise) throughout Seoul and the urban characteristics that affect them by utilizing the big data of the S-Dot sensors in Seoul, which has recently become a hot topic. In other words, it proposes a big data based urban computing research methodology and research direction to confirm the relationship between urban characteristics and living environments that directly affect citizens. The temporal range is from 2020 to 2021, which is the available range of time series data for S-Dot sensors, and the spatial range is throughout Seoul by 500mX500m GRID. First of all, as part of analyzing specific living environment patterns, simple trends through EDA are identified, and cluster analysis is conducted based on the trends. After that, in order to derive specific urban planning factors of each cluster, basic statistical analysis such as ANOVA, OLS and MNL analysis were conducted to confirm more specific characteristics. As a result of this study, cluster patterns of environment elements(PM2.5, PM10, Noise) and urban factors that affect them are identified, and there are areas with relatively high or low long-term living environment values compared to other regions. The results of this study are believed to be a reference for urban planning management measures for vulnerable areas of living environment, and it is expected to be an exploratory study that can provide directions to urban computing field, especially related to environmental data in the future.

A Study on the Characteristics of Rural and Urban Surface Ozone Conentrations (청정지역과 도시지역의 오존농도 특성 연구)

  • 서명석;박경윤;이호근;장광미;강창희;허철구;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.253-262
    • /
    • 1995
  • A study has been performed on the characteristics of rural and urban surface ozone concentration for the period of March 1992 to February 1993. The monitoring station of rural ozone is located at Kosan, Cheju and other urban monitoring stations are located at Seoul, Pusan and Kwangju. Rural's and urban's ozone data exhibit a distinct features in many ways. First, annual mean of rural ozone concentration os very high(42 ppbv) but urban's are very low(10 .sim.15 ppbv). Second, rural ozone data shows a seasonal variation with it's maximum in spring, and minimum in summer, but urban's show a seasonal variation with it's maximum in spring, and minimum in winter. Third, diurnal variation of rural data is very small but that of urban's are very large. Fourth, urban's data are extremely low(< 3 ppbv) and have no seasonal variations.

  • PDF

An Automatic Urban Function District Division Method Based on Big Data Analysis of POI

  • Guo, Hao;Liu, Haiqing;Wang, Shengli;Zhang, Yu
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.645-657
    • /
    • 2021
  • Along with the rapid development of the economy, the urban scale has extended rapidly, leading to the formation of different types of urban function districts (UFDs), such as central business, residential and industrial districts. Recognizing the spatial distributions of these districts is of great significance to manage the evolving role of urban planning and further help in developing reliable urban planning programs. In this paper, we propose an automatic UFD division method based on big data analysis of point of interest (POI) data. Considering that the distribution of POI data is unbalanced in a geographic space, a dichotomy-based data retrieval method was used to improve the efficiency of the data crawling process. Further, a POI spatial feature analysis method based on the mean shift algorithm is proposed, where data points with similar attributive characteristics are clustered to form the function districts. The proposed method was thoroughly tested in an actual urban case scenario and the results show its superior performance. Further, the suitability of fit to practical situations reaches 88.4%, demonstrating a reasonable UFD division result.

Data complement algorithm of a complex sewerage pipe system for urban inundation modeling

  • Lee, Seungsoo;An, Hyunuk;Kim, Yeonsu;Hur, Young-Teck;Lee, Daeeop
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.509-517
    • /
    • 2020
  • Geographic information system (GIS) sewer network data are a fundamental input material for urban inundation modeling, which is important to reduce the increasing damages from urban inundation due to climate change. However, the essential attributes of the data built by a local government are often missing because the purpose of building the data is the maintenance of the sewer system. Inconsistent simplification and supplementation of the sewer network data made by individual researchers may increase the uncertainty of flood simulations and influence the inundation analysis results. Therefore, it is necessary to develop a basic algorithm to convert the GIS-based sewage network data into input data that can be used for inundation simulations in consistent way. In this study, the format of GIS-based sewer network data for a watershed near the Sadang Station in Seoul and the Oncheon River Basin in Busan was investigated, and a missing data supplementing algorithm was developed. The missing data such as diameter, location, elevation of pipes and manholes were assumed following a consistent rule, which was developed referring to government documents, previous studies, and average data. The developed algorithm will contribute to minimizing the uncertainty of sewer network data in an urban inundation analysis by excluding the subjective judgment of individual researchers.