• Title/Summary/Keyword: Urban Climate Change

Search Result 628, Processing Time 0.03 seconds

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

Experimental and Numerical Study on the Effect of the Rain Infiltration with the Increase of Surface Temperature (지표면 온도상승이 빗물의 토양침투에 미치는 영향에 대한 실험 및 수치 해석적 연구)

  • Shin, Nara;Shin, Mi Soo;Jang, Dong Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.422-429
    • /
    • 2013
  • It is generally known that the increase of the Earth surface temperature due to the global warming together with the land desertification by rapid urban development has caused severe climate and weather change. In desert or desertification land, it is observed that there are always severe flooding phenomena, even if desert sand has the high porosity, which could be believed as the favorable condition of rain water infiltration into ground water. The high runoff feature causes possibly another heavy rain by quick evaporation with the depletion of underground water due to the lack of infiltration. The basic physics of desert flooding is reasonably assumed due to the thermal buoyancy of the higher temperature of the soil temperature than that of the rain drop. Considering the importance of this topic associated with water resource management and climate disaster prevention, no systematic investigation has, however, been reported in literature. In this study, therefore, a laboratory scale experiment together with the effort of numerical calculation have been performed to evaluate quantitatively the basic hypothesis of run-off mechanism caused by the increase of soil temperature. To this end, first, of all, a series of experiment has been made repeatedly with the change of soil temperature with well-sorted coarse sand having porosity of 35% and particle diameter, 2.0 mm. In specific, in case 1, the ground surface temperature was kept at $15^{\circ}C$, while in case 2 that was high enough at $70^{\circ}C$. The temperature of $70^{\circ}C$ was tested as this try since the informal measured surface temperature of black sand in California's Coachella Valley up to at 191 deg. $^{\circ}F$ ($88^{\circ}C$). Based on the experimental study, it is observed that the amount of runoff at $70^{\circ}C$ was higher more than 5% compared to that at $15^{\circ}C$. Further, the relative amount of infiltration by the decrease of the surface temperature from 70 to $15^{\circ}C$ is about more than 30%. The result of numerical calculation performed was well agreed with the experimental data, that is, the increase of runoff in calculation as 4.6%. Doing this successfully, a basic but important research could be made in the near future for the more complex and advanced topic for this topic.

A Phenology Modelling Using MODIS Time Series Data in South Korea (MODIS 시계열 자료(2001~2011) 및 Timesat 알고리즘에 기초한 남한 지역 식물계절 분석)

  • Kim, Nam-Shin;Cho, Yong-Chan;Oh, Seung-Hwan;Kwon, Hye-Jin;Kim, Gyung-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.186-193
    • /
    • 2014
  • This study aimed to analyze spatio-temporal trends of phenological characteristics in South Korea by using MODIS EVI. For the phenology analysis, we had applied double logistic function to MODIS time-series data. Our results showed that starting date of phenology seems to have a tendency along with latitudinal trends. Starting date of phenology of Jeju Island and Mt. Sobeak went back for 0.38, 0.174 days per year, respectively whereas, Mt. Jiri and Mt. Seolak went forward for 0.32 days, 0.239 days and 0.119 days, respectively. Our results exhibited the fluctuation of plant phonological season rather than the change of phonological timing and season. Starting date of plant phenology by spatial distribution revealed tendency that starting date of mountain area was late, and basin and south foot of mountain was fast. In urban ares such as Seoul metropolitan, Masan, Changwon, Milyang, Daegu and Jeju, the phonological starting date went forward quickly. Pheonoligcal attributes such as starting date and leaf fall in urban areas likely being affected from heat island effect and related warming. Our study expressed that local and regional monitoring on phonological events and changes in Korea would be possible through MODIS data.

The Change of Riverside Vegetation by Construction of Ecological Stream in Suwoncheon, Gyeonggi Province (경기도 수원천 생태하천 복원사업 이후 식생변화 연구)

  • Choe, Il-Hong;Han, Bong-Ho;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • This study aims to analyze the change in vegetation for 10 years after the construction, targeting Suwoncheon, the first domestic ecological stream construction project. As for the section for the study, the section from Gyeonggi bridge to Youngyeon bridge, the first restoration project section, was targeted. The research districts consisted of 3 districts depending on topographical structure. Investigation check cosisted of cross-sectional topographical structure, vegetation status and the structure of herbaceous plant community. As for the cross-sectional topographical structure of the stream, the width of entire stream was 26.5~28.0m and water channel is 10~20m. The area for hydrophilic space was securing spacious riverside. Upper stream of reservoir beam was shallow and slow in reservoir area above weir. Lower stream of reservoir beam, the width of water channel was narrow and ripples were formed. Among species, 9 plants were planted and 6 species plants including Salix gracilistyla, Phragmites communis and Zoysia japonica were planted at the time of construction. In the water side, there were 2 species, such as Zoysia japonica and Trifolium repens, etc, still remained after seeding at the time of constrcution. The planted plants which were observed through this investigation, were 2 species such as Festuca arundinacea and Dactylis glomerata. Apart from the planted plants, arid climate herbaceous plant such as Setaria viridis and Artemisia princeps var. orientalis formed power and the naturalized species variously emerged in 15 species. For revetment, natural stone stacking method was condicted and Salix gracilistyla, Aceriphyllum rossii, etc were planted. But all the planted plants disappeared and now it was covered with Equisetum arvense and Humulus japonicus. It was because that the base for growth and development of the plants was not constructed at the time of restoration in a way of attaching natural stones onto the concrete base. In the water channel, various wetland species including Typha orientalis, Acorus calamus var. angustatus and Phragmites communis, etc, were planted but only Salix gracilistyla, Phragmites communis and Zizania latifolia remained. As for species of the autochthons, Persicaria thunbergii was dominant. In the lower stream of reservoir beam, Humulus japonicus formed forces. In the hydrophilic space, it was necessary to direct the landscape of in-stream vegetation in cosideration of users. For this, planting Miscanthus sacchariflorus in a community was proposed. In the upper stream of reservoir beam, suplementary screen seeding was necessary so that Zizania latifolia, Typha orientalis and Phragmites communis can fit the depth of water. In the Lower stream of reservoir beam, it was necessary to constantly manage Humulus japonicus so that the wetland autochthons species, such as Phragmites communis and Persicaria thunbergii can establish power more stably.

The Evaluation of Carbon Storage and Economic Value Assessment of Wetlands in the City of Seoul (서울시 습지지역의 탄소저장 및 경제적 가치 평가에 대한 연구)

  • Choi, Jiyoung;Oh Jongmin;Lee, Sangdon
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.120-132
    • /
    • 2021
  • The ecosystem and landscape conservation areas of Seoul were designated according to the Natural Environment Conservation Act and the Natural Environment Conservation Ordinance. With the adoption of the "Rapid Assessment of Wetland Ecosystem Service (RAWES)" approach and the "wetland ecosystem service" for the Ramsar Wetland City Accreditation at the 13th Meeting of the Conference of the Contracting Parties to the Ramsar Convention on Wetlands in 2018, the need for data evaluating wetland ecosystem services has become a necessity. Therefore, in this study, we selected five wetlands from the ecosystem and landscape conservation areas in Seoul, having high ecological conservation values, and evaluated their carbon sequestration and economic value assessment using the InVEST model, which is an ecosystem service evaluation technique. The evaluation results for carbon storage in each wetland are as follows: Tancheon Wetland: 3,674.62 Mg; Bamseom Island in the Hangang River: 1,511.57 Mg; Godeok-dong Wetland: 5,007.21 Mg; Amsa-dong Wetland: 7,108.47 Mg; and Yeouido Wetland: 290.27 Mg. Particularly, the Tancheon Wetland showed the lowest carbon sequestration of 1,130.37 Mg, as compared to the results acquired in 2013, of 4,804.99 Mg. When the average effective carbon rate of $16.06 (US) was applied to the decreased carbon sequestration value, a loss of $15,910.58(US) was calculated. Furthermore, if the average social cost of carbon ($204 (US)) is considered, which includes the impact of climate change on productivity and ecosystems, the total loss is equivalent to $202,101.97 (US). This study aims to examine the natural resource value of urban wetlands by evaluating selected major wetlands in Seoul. This study can be utilized as basic data to plan for the protection and management of the ecosystem and landscape conservation areas. Additionally, because wetland value assessment is considered essential, the results of this study can be used in future research to provide measures for evaluating ecosystem services in the Ramsar Wetland City Certification System. Moreover, this study can be utilized for selecting important wetlands as Ramsar sites, and to raise awareness about the significance of conserving urban wetlands, and for expanding international exchange among the Ramsar Wetland sites.

The Current State and Characteristics of Ornamental Grasses in South Korea (국내 유통 관상용 그라스의 현황 및 특징 분석)

  • Kim, Janghun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.151-162
    • /
    • 2021
  • The recent trend of using ornamental grasses as essential landscaping plants has become more prominent, while the demands for today's gardens are to solve the challenges of climate change, biodiversity loss, and urban ecosystem services. Nowadays, the interest in ornamental grasses in South Korea is dramatically increasing, as is the number of available species and varieties. To find the better use of ornamental grasses in urban green spaces, more research should be conducted to understand the current state of ornamental grasses and their characteristics in South Korea. and a practical way of applying ornamental grasses to urban gardens should be devised. For that purpose, this research carried out a survey on the current state of ornamental grasses distributed in the landscaping plants market in South Korea. The grasses were analyzed according to the growing conditions, including habitats, ecological, and horticultural growth characteristics. As a result, 40 genera, 104 species, and 264 taxa of ornamental grasses were verified to be distributed in the market for garden plants in South Korea in August 2021. Poaceae and Cyperaceae are 69.7% and 28.4% among them, respectively. Juncaceae and Typhaceae are of little importance. No Restionaceae is supplied yet. Most of the Poaceae ornamental grasses prefer sunny open land, but others from various habitats are used too. The majority of the Cyperaceae ornamental grasses originate from woodlands, woodland edges, water's edges, and marshes. The market supplies fourteen genera of cool-season and sixteen genera of warm-season grasses. According to life-types of grasses, thirty-eight species are evergreens or semi-evergreens. Thirty-four species are deciduous. Seven species are summer-dormant. According to the growth habits of the grasses, thirty-three species are runners and fifty-one species are clumpers. There are fifteen taxa of ornamental grasses recently selected that have become native grasses.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

An Analysis of the Effect of Reducing Temperature and Fine Dust in the Roadside Tree Planting Scenario (가로수 식재 시나리오에 따른 기온 및 미세먼지 저감 효과 분석)

  • Jeong-Hee EUM;Jin-Kyu MIN;Ju-Hyun PARK;Jeong-Min SON;Hong-Duck SOU;Jeong-Hak OH
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.68-81
    • /
    • 2023
  • This study aims to establish a scenario based on the spacing and arrangement of the roadside trees to reduce heat waves and fine dust in cities that occurred during the urbanization process and to quantitatively analyze the degree of reduction. The ENVI-met 5.0.2v model, a micro-climate simulation program, was used to analyze the degree of improvement in the thermal environment and fine dust according to the roadside tree scenario. As a result of temperature analysis according to street tree spacing, the narrower the distance between roadside trees, the lower the temperature during the day as the number of planted trees increased, and a similar pattern was shown regardless of the distance between roadside trees in the morning and evening. In the case of fine dust emitted from the road, the concentration of fine dust increased slightly due to the increase in roadside trees, but the concentration of sidewalks where people walk increased slightly or there was no difference because of blocking fine dust on trees. The temperature according to the arrangement of street trees tended to decrease as the number of planted trees increased as the arrangement increased. However, not only the amount of trees but also the crown projected area was judged to have a significant impact on the temperature reduction because the temperature reduction was greater in the scenario of planting the same amount of trees and widening the interval of arrangement. In terms of the arrangement, the fine dust concentration showed a difference from the results according to the interval, suggesting that the fine dust concentration may change depending on the relationship between the main wind direction and the tree planting direction. By quantitatively analyzing the degree of thermal environment and fine dust improvement caused by roadside trees, this study is expected to promote policies and projects to improve the roadside environment efficiently, such as a basic plan for roadside trees and a project for wind corridor forests.

Comparative Study on Perceived Effectiveness of Suncheon Bay International Garden Expo - 2013 and 2023 with a Focus on Visitors - (순천만국제정원박람회 개최효과 인지 비교 연구 - 2013, 2023년 방문객을 중심으로 -)

  • Kim, Tai-Won;Kim, Gunwoo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.1-11
    • /
    • 2023
  • By comparing and analyzing the effects of the 2013 Suncheon Bay International Garden Expo and the 2023 Suncheon Bay International Garden Expo, designated as Korea's first national garden, this study aims to present basic data for the future operation direction and sustainability strategy. First, in both fairs, satisfaction throughout the event was high, 4.0 or higher. In particular, the satisfaction level of the 2023 Suncheon Bay International Garden Expo was higher than that of the 2013 Suncheon Bay International Garden Expo. As the longest international event held since the COVID-19 pandemic, it reflected the citizens' demand for healing and recharging in natural spaces. Second, as a result of comparing the types of perceptions that affected satisfaction, it was found that economic, environmental, and ecological types commonly affected satisfaction at the 2013 and 2023 Suncheon Bay International Garden Expo. The 2013 Suncheon Bay International Garden Expo established the brand value as an "ecological city" by creating a garden in the city center along with an ecological resource called Suncheon Bay. In addition, the 2023 Suncheon Bay International Garden Expo expanded the scope of the garden to the entire city center. It also attempted to create a city where humans and nature coexist by realizing values, such as responding to climate change and carbon neutrality. In other words, one of the ways to secure urban competitiveness is to attract corporate investment and tourists and build a differentiated brand in Suncheon by promoting the 2023 fair based on the potential ecological values of the region after the 2013 Suncheon Bay International Garden Expo. Therefore, if the Suncheon Bay International Garden Expo continues to develop environmental and ecological content and programs in line with changes in society and tries to establish itself in citizens' perception through cooperation with local governments and residents, it will be able to establish its identity and brand power.

A Study on the Analysis and Methods to Improve the Management System for Building Energy Database (국가 건물에너지통합관리시스템의 데이터 품질 분석 및 개선방안 연구)

  • Kim, Sung-Min;Yoon, Jong-Don;Kwon, Oh-In;Shin, Sung-Eun
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.131-144
    • /
    • 2016
  • Damage occur frequently around the world on climate change and the main cause of greenhouse gas emissions regulation is growing. To this end, the government has built integrated management system for national building energy. The building energy information is total 6.8 million complex. Integrated management system for national building energy database are matched building registers information and energy information of the supply agencies. However, the matching process has its limitations so advanced work is in progress continuously. This study analyzed integrated management system for national building energy database quality and limitations and deduce improvement plan to increase system reliability and availability. The existing database matching average rate is 85.6%. 58.2% of the total non-matching data type has no building information. To ensure the ease of new database matching and the accuracy of the existing database matching, address standarization and building properties system are needed between building information and energy information. Also, The system construction is required to include information on other energy sources like petroleum energy which has high proportion of non-urban areas and small residential areas and renewable energy which has high potential in development and utilization.