• Title/Summary/Keyword: Urban Climate Change

Search Result 628, Processing Time 0.03 seconds

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.

Greenhouse Gas Reduction by Air Quality Management Policy in Gyeonggi-do and Its Co-benefit Analysis (경기도 대기질 개선 정책의 온실가스 동시 저감 및 그에 따른 공편익 효과 분석)

  • Kim, Dong Young;Choi, Min-Ae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.570-582
    • /
    • 2017
  • In recent years, national and local government's air quality management and climate change adaptation policy has been significantly strengthened. The measures in the two policies may be in a relationship of trade-off or synergy to each other. Greenhouse gases and air pollutants are mostly emitted from the same sources of using considerable amounts of fossil fuels. Co-benefits, in which either measure has a positive effect on the other, may be maximized by reducing the social costs and by consolidating the objectives of the various policies. In this study, the co-benefits were examined by empirically analyzing the effects of air pollutants and greenhouse gas emission reduction, social cost, and cost effectiveness between the two policies. Of the total 80 projects, the next 12 projects generated co-benefits. They are 1) extend restriction area of solid fuel use, 2) expand subsidy of low-$NO_x$ burner, 3) supply hybrid-vehicles, 4) supply electric-vehicles, 5) supply hydrogen fuel cell vehicles, 6) engine retrofit, 7) scrappage of old car, 8) low emission zone, 9) transportation demand management, 10) supply land-based electric of ship, 11) switching anthracite to clean fuel in private sector, 12) expand regional combined-energy supply. The benefits of air pollutants and greenhouse gas-related measures were an annual average of KRW 2,705.4 billion. The social benefits of the transportation demand management were the highest at an annual average of KRW 890.7 billion, and followed by scrappage of old cars and expand regional combined-energy supply. When the social benefits and the annual investment budgets are compared, the cost effectiveness ratio is estimated to be about 3.8. Overall, the reduction of air pollutants caused by the air quality management policy of Gyeonggi-do resulted in an annual average of KRW 4,790.2 billion. In the point sources management sector, the added value of $CO_2$ reduction increased by 4.8% to KRW 1,062.8 billion, while the mobile sources management sector increased by 3.6% to KRW 3,414.1 billion. If social benefits from $CO_2$ reduction are added, the annual average will increase by 7.2% to KRW 5,135.4 billion. The urban and energy management sectors have shown that social benefits increase more than twice as much as the benefits of $CO_2$ reduction. This result implies that more intensive promotion of these measures are needed. This study has significance in that it presents the results of the empirical analysis of the co-benefits generated between the similar policies in the air quality management and the climate change policy which are currently being promoted in Gyeonggi-do. This study suggested that the method of analyzing the policy effect among the main policies in the climate atmospheric policy is established and the effectiveness and priority of the major policies can be evaluated through the policy correlation analysis based on the co-benefits. It is expected that it could be a basis for evaluation the efficiency of the climate change adaptation and air quality management policies implemented by the national and local governments in the future.

A Space Making of Waterfront City focused on the Sustainable Campus on the Waterfront (워터프론트도시 공간조성방안 연구 -워터프론트 대학의 지속가능 캠퍼스를 중심으로)

  • Lee, Kumjin;Chu, Beom;Song, Changgeun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2017
  • The opportunity provided for design method and strategy of sustainable campus on the waterfront, is the purpose of this paper. Waterfront campus is an important issue as it seeks to revive the sustainability and to renew the facilities. This paper reviews an assessment of its success for waterfront campus in 10 principles such as waterfront, water and safety, climate & energy, green building and transportation, green labs and recycling, health and food, social economic sustainability, fund, human, smart, also concludes with the establishment of space making for the waterfront campus for future educational facilities on the waterfront; implementation of waterfront campus maserplan; building sustainable campus in adaptation to climate change; creative and resilient cooperation.

Flood Frequency Analysis with the consideration of the heterogeneous impacts from TC and non-TC rainfalls: application to daily flows in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.121-121
    • /
    • 2020
  • Varying dominant processes, including Tropical Cyclone (TC) and non-TC rainfall events, have been known to drive the occurrence of precipitation in South Korea. With the changes in the pattern of the Earth's climate due to anthropogenic activities, nonstationarity or changes in the magnitude and frequency of these dominant processes have been separately observed for the past decades and are expected to continue in the coming years. These changes often cause unprecedented hydrologic events such as extreme flooding which pose a greater risk to the society. This study aims to take into account a more reliable future climate condition with two dominant processes. Diverse statistical models including the hidden markov chain, K-nearest neighbor algorithm, and quantile mappings are utilized to mimic future rainfall events based on the recorded historical data with the consideration of the varying effects of TC and non-TC events. The data generated is then utilized to the hydrologic model to conduct a flood frequency analysis. Results in this study emphasize the need to consider the nonstationarity of design rainfalls to fully grasp the degree of future flooding events when designing urban water infrastructures.

  • PDF

Evaluation of Performance and Uncertainty for Multi-RCM over CORDEX-East Asia Phase 2 region (CORDEX-동아시아 2단계 영역에 대한 다중 RCM의 모의성능 및 불확실성 평가)

  • Kim, Jin-Uk;Kim, Tae-Jun;Kim, Do-Hyun;Kim, Jin-Won;Cha, Dong-Hyun;Min, Seung-Ki;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.361-376
    • /
    • 2020
  • This study evaluates multiple Regional Climate Models (RCMs) in simulating temperature and precipitation over the Far East Asia (FEA) and estimates the portions of the total uncertainty originating in the RCMs and the driving Global Climate Models (GCMs) using nine present-day (1981~2000) climate data obtained from combinations of three GCMs and three RCMs in the CORDEX-EA phase2. Downscaling using the RCMs generally improves the present temperature and precipitation simulated in the GCMs. The mean temperature climate in the RCM simulations is similar to that in the GCMs; however, RCMs yield notably better spatial variability than the GCMs. In particular, the RCMs generally yield positive added values to the variability of the summer temperature and the winter precipitation. Evaluating the uncertainties by the GCMs (VARGCM) and the RCMs (VARRCM) on the basis of two-way ANOVA shows that VARRCM is greater than VARGCM in contrast to previous studies which showed VARGCM is larger. In particular, in the winter temperature, the ocean has a very large VARRCM of up to 30%. Precipitation shows that VARRCM is greater than VARGCM in all seasons, but the difference is insignificant. In the following study, we will analyze how the uncertainty of the climate model in the present-day period affects future climate change prospects.

The Relationship between Temperature Patterns and Urban Morfometri in the Jakarta City, Indonesia

  • Maru, Rosmini;Ahmad, Shaharuddin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.128-136
    • /
    • 2015
  • Sky View Factor (SVF) is one of the urban morfometri parameters that impact on the Urban Heat Island (UHI). SVF analisys was conducted in the city of Jakarta to investigate the relationship between urban temperature with urban morfometri. Jakarta City is the most populous city in the world that has a surrounding area $66,152km^2$ and the total population around 23 million people. The population of the city is the sixth highest in the world today. SVF measurements done by taking pictures at the six stations that have different morphological characteristics namely (1) the narrow streets Apartment Cempaka Mas (JS ITC), (2) the width of the road Apartment Cempaka Mas (JL ITC), (3) in front of Colleges Kanisius (DKK), (4) in front of office Journalist of Indonesia (DKWI), (5) Utan Kayu (UK), and (6) Tambun (TB). SVF value is obtained from the photgraphic image. Taking pictures at the location using a Nikon D90 camera with a Nikon Fisheye Nikkor 10.5 mm 1 : 2.8 G ED, further processed through a global mapper program. Therefore, the SVF derived from the six stations that vary 0.21 to 0.78. Temperature measurement is done during daylight hours from 06:00 am to 18:00 pm during the Western Part of Indonesia (WIB). Measurements performed at three different times, namely working days (HK) regular holidays (HCB) national holidays (HCN). The results showed that the highest average temperature of $33.32^{\circ}C$, occurring at UK station (SVF=0.45) at the time of HCB. Meanwhile, the average low temperature of $31.22^{\circ}C$ occurred at JLITC station (SVF=0.42). The two-time occurred on ordinary holidays. Maximum temperature of $38.4^{\circ}C$ occurred in Utan Kayu station (SFV=0.45) that occurred at 11.00 hrs, normal holidays. Furthermore minimum temperature 24.5 occurred at Tambun station (SVF=0.78) at 06.00 hrs in the morning at the usual holidays and national holidays. In general, the results showed that areas with large SVF has a lower temperature compared with areas with smaller SVF. Though, are not the only factors that matter, but this research may show that an increase in temperature in the city of Jakarta. Therefore, it is necessary to mitigate the serious from the government or society.

Carbon Emission Model Development using Urban Planning Criteria - Focusing on the Case of Seoul (도시공간 계획요소를 이용한 이산화탄소 배출량 산정 모델 개발 - 서울시를 사례로)

  • Kim, In-Hyun;Oh, Kyu-Shik;Jung, Seung-Hyun
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.11-18
    • /
    • 2011
  • Urban space is the main contributor of greenhouse gas emissions, a primary cause of global warming. In order to reduce greenhouse gas emissions, planning at a city-level is necessary. The aim of this research is to develop a carbon emission model which can be used to create and manage urban spaces. In order to achieve this aim, the following methodologies were utilized. First, urban planning criteria related to population, landuse, and activity level were selected through theoretical speculation. Second, carbon dioxide emission was calculated based on electricity, gas energy, heating, petroleum, and water usages. Third, Seoul was selected as a case study city, and a carbon emission model was developed through a relational analysis between Seoul's urban planning criteria and carbon emissions. Thus far, various efforts have been made to respond to climate changes in urban spaces, but these have been limited to analyzing contributing factors in terms of their total amounts of carbon emissions in the entire city. However, the carbon emission model of this study is derived from urban planing criteria at a detailed scale. This sets our study apart from other studies by demonstrating a specific model in a local setting which can be utilized for lowering carbon emissions at a city level.

Landscape Planning and Design Methods with Human Thermal Sensation (인간 열환경 지수(HumanThermal Sensation)를 이용한 조경계획 및 디자인 방법)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Human thermal sensation based on a human energy balance model was analyzed in the study areas, the Changwon and Nanaimo sites, on clear days during thesummer of 2009. The climatic input data were air temperature, relative humidity, wind speed and solar and terrestrial radiation. The most effective factors for human thermal sensation were direct beam solar radiation, building view factor and wind speed. Shaded locations had much lower thermal sensation, slightly warm, than sunny locations, very hot. Also, narrow streets in the Nanaimo site had higher thermal sensation than open spaces because of greater reflected solar radiation and terrestrial radiation from their surrounding buildings. Calm wind speed also produced much higher thermal sensation, which reduced sensible and latent heat loss from the human body. By adopting climatic factors into landscape architecture, the human thermal sensation analysis method promises to help create thermally comfortable outdoor areas. The method can also be used for urban heat island modification and climate change studies.

A Numerical Simulation for Thermal Environments by the Modification of Land-use in Busan (부산지역 토지이용(land-use) 변화에 의한 열환경 수치모의)

  • 김유근;문윤섭;오인보;임윤규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.453-463
    • /
    • 2002
  • Prognostic meteorological model, MM5V3 (Mesoscale Model 5 Version 3) was used to assess the effects of the land-use modifications on spatial variations of temperature and wind fields in Busan during the selected period of summer season in 2000. We first examined sensitivity analysis for temperature between MM5V3 predictions and meteorological data observed at 4 AWS (Automatic Weather System) stations in Busan, which exhibited low structural and accurate errors (Mean Bias Error, MBE: 0.73, Root Mean Square Error, RMSE: 1.18 on maximum). The second part of this paper, MMSV3 simulations for the modification of land-use was performed with 1 km resolution in target domain, 46$\times$46 $\textrm{km}^2$ area around city of Busan. It was found that modification result from change of surface land-use in central urban area altered spatial distributions of temperature and wind. In particular, heat island core moved slightly to the seaward at 1300 LST. This results may imply that modification of surface land-use leads to change the thermal environments; in addition, it has a significant effect on local wind circulations and dispersions of air pollutants.

Establishment and Standardization of Evaluation Procedure for Urban Flooding Analysis Model Using Available Inundation Data (가용 침수 자료를 활용한 도심지 침수 해석 모형의 평가 절차 수립 및 표준화)

  • Shin, Eun Taek;Jang, Dong Min;Park, Sung Won;Eum, Tae Soo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.100-110
    • /
    • 2020
  • Recently, the frequency of typhoon and torrential rain due to climate change is increasing. In addition, the upsurge in the complexity of urban sewer network and impervious surfaces area aggravates the inland flooding damage. In response to these worsening situations, the central and local governments are conducting R&D tasks related to predict and mitigate the flood risk. Researches on the analysis of inundation in urban areas have been implemented through various ways, and the common features were to evaluate the accuracy and justification of the model by comparing the model results with the actual inundation data. However, the evaluation procesure using available urban flooding data are not consistent, and if there are no quantitative urban inundation data, verification has to be performed by using press releases, public complaints, or photos of inundation occurring through 'CCTV'. Because theses materials are not quantitative, there is a problem of low reliability. Therefore, this study intends to develop a comparative analysis procedure on the quantitative degree and applicability of the verifiable inundation data, and a systematic framework for the performance assessment of urban flood analysis model was proposed. This would contribute to the standardization of the evaluation and verification procedure for urban flooding modelling.