• Title/Summary/Keyword: Urban Canyon

Search Result 52, Processing Time 0.019 seconds

Classification of Flow Regimes in Urban Street Canyons Using a CFD Model (CFD 모형을 이용한 도시 도로 협곡에서의 흐름 체계 분류)

  • Kim, Jae-Jin;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.525-535
    • /
    • 2005
  • Using a three-dimensional computational fluid dynamics (CFD) model with the $k-{\varepsilon}$ turbulence closure scheme based on the renormalization group theory, flow regimes in urban street canyons are classified according to the building and street aspect ratios. The transition between skimming flow (SF) and wake interference flow (WIF) is determined with the size of double-eddy circulation generated behind the upwind building. The transition between WIF and isolated roughness flow (IRF) is determined with the flow reattachment distance from the upwind building. The critical aspect ratios at which the flow transition occurs are found and compared with those in previous studies. The results show that the flow-regime classification method used in this study is quite reasonable and that the values of the critical aspect ratios are generally consistent with those in fluid experiments or large-eddy simulation. The regression equation describing a relation between the building and street aspect ratios at the flow-regime transition is presented.

A Study on Vehicular Positioning Technologies for Smart/Green Cars (스마트/그린형 자동차의 위치정보시스템에 관한 연구)

  • Ro, Kap-Seong;Oh, Jun-Seok;Dong, Liang
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.3
    • /
    • pp.92-101
    • /
    • 2010
  • Energy efficiency and safe mobility are the two key constituents of the future automobile. The technologies that enable these features are now heavily dependent upon information and communication technology rather than traditional auto-mechanical technology. This paper presents an exploratory project 'Smart&Green Vehicle Project' at Western Michigan University which is to improve the geographical location accuracy of vehicles and to study various applications of making such location data available. Global Positioning System (GPS), Inertial Navigation System (INS), Vehicular Ad-hoc Network (VANET) technology, and data fusion among these technologies are investigated. Testing and evaluation is done on systems which will gather vehicular positioning data during GPS signal loss. Vehicles in urban settings do not acquire accurate positioning data from GPS alone; therefore there is a need for exploration into technology that can assist GPS in urban settings. The goal of this project is to improve the accuracy of positioning data during a loss of GPS signal. Controlled experiments are performed to gather data which aided in assessing the feasibility of these technologies for use in vehicular platforms.

  • PDF

Exceedance probability as a tool to evaluate the wind environment of urban areas

  • Bady, Mahmoud;Kato, Shinsuke;Ishida, Yoshihiro;Huang, Hong;Takahashi, Takeo
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.455-478
    • /
    • 2008
  • The present study aims to estimate the wind ventilation performance for pedestrian level domains from the air quality point of view. Three typical models of a dense urban area were considered and numerically simulated in order to examine the effects of the geometry of such models on wind flow characteristics, which in turn affect the air quality, within the pedestrian domain of a street canyon located within this area. The calculated flow fields were employed to estimate the exceedance probabilities within the study domain using a new approach: air exchange rate within the domain. The study has been applied to nine cities in Japan: Tokyo, Osaka, Sapporo, Niigata, Fukuoka, Nagoya, Sendai, Yokohama, and Kyoto, based on their mean wind velocity data. The results demonstrated that the exceedance probability analysis of the pedestrian wind environment could be a valuable tool during the design stage of inhabited areas for the evaluation of pollutant-removal efficiency by the applied wind. Also, the calculated probabilities demonstrated substantial dependence on both the geometry of building arrays and the wind conditions of the nine cities.

A Study on the Characteristics of Flow and Reactive Pollutants' Dispersion in Step-up Street Canyons Using a CFD Model (CFD 모델을 이용한 체승 도시협곡의 흐름과 반응성 대기오염물질 확산 특성 연구)

  • Kim, Eun-Ryoung;Park, Rokjin J.;Lee, Dae-Geun;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.473-482
    • /
    • 2015
  • In this study, street canyons with a higher downwind building (so called, step-up street canyons) are considered for understanding characteristics of flow and reactive pollutants' dispersion as a basic step to understand the characteristics in wider urban areas. This study used a CFD_NIMR_SNU coupled to a chemistry module just including simple $NO_X-O_3$ photochemical reactions. First, flow characteristics are analyzed in step-up street canyons with four aspect ratios (0.33, 0.47, 0.6, 0.73) defined as ratios of upwind building heights to downwind building height. The CFD_NIMR_SNU reproduced very well the main features (that is, vortices in the street canyons) which appeared in the wind-tunnel experiment. Wind speed within the street canyons became weak as the aspect ratio increased, because volume of flow incoming over the upwind building decreased. For each step-up street canyon, chemistry transport model was integrated up to 3600 s with the time step of 0.5 s. The distribution patterns of $NO_X$ and $O_3$ were largely dependent on the mean flow patterns, however, $NO_X$ and $O_3$ concentrations were partly affected by photochemical reactions. $O_3$ concentration near the upwind lower region of the street canyons was much lower than background concentration, because there was much reduction in $O_3$ concentration due to NO titration there. Total amount of $NO_X$ in the street canyons increased with the aspect ratio, resulting from the decrease of mean wind intensity.

A System to Recognize Position of Moving Vehicle based on Images (영상을 이용한 차량의 주행 위치 측정 시스템)

  • Kim, Jin-Deog;Moon, Hye-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2619-2625
    • /
    • 2011
  • The GPS technique widely used recently in car navigation system has two problems that are unavailability in urban canyons and inherent positional error rate. The one has been studied and solved in many literatures. However, the other still leads to incorrect locational information in some area, especially parallel roads. This paper proposes and implements a system to recognize lane of moving vehicle based on images obtained from in-vehicle networks or other devices. The proposed system utilizes a real-time image matching algorithm which determines the direction of moving vehicle in parallel section of road. It also employs a method for accuracy improvement. The results obtained from experimental test on real-time navigation show that the proposed systems works well and the accuracy increases.

Using reverberation time to evaluate the amount of scattered sound energy from a tree (잔향시간지표를 이용한 나무의 음향확산성 평가)

  • Yang, Hong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.141-144
    • /
    • 2014
  • In urban spaces surrounded by buildings, trees could disperse sound energy, which affect sound level distribution and street canyon reverberation. Therefore, this paper examines the amount of scattered sound energy from a tree in open field by means of a reverberation time (RT). Five trees of different species and crown sizes were considered. The influential factors include crown size and shape, foliage condition, and source-receiver distance. The results show that RT is proportionally increased with the increase of tree crown sizes, which is the most determining factor. The maximum RT measured was 0.34 sec at 4000 Hz for the studied trees in leaf. The presence of leaves increased RT at high frequencies, typically by 0.14 sec at 4000 Hz. With increasing source-receiver distance within 40 m, RT was slightly changed.

  • PDF

A numerical study for near building effects on concentration fields of the skimming flow in an urban street canyon (도시 협곡내 skimming flow 내의 농도장에 주변 건물이 미치는 영향에 관한 수치 해석적 연구)

  • 정상진
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.203-204
    • /
    • 2000
  • 도시협곡 내에서 형성되는 전형적인 유동장은 협곡내부에서 형성되는 회전류(vortex)이다(Berkowicz, 1998). Oke(1988)에 따르면 단면비가 큰 경우 (W/H>2.5), 도시 협곡내 유동장은 isolated roughness flow, 단면비가 중간인 경우(1.538

  • PDF

Accuracy Correction of Car Position by INS (INS에 의한 차량의 위치 정확도 보정)

  • 박운용;장상규;이재원;정공운
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.123-127
    • /
    • 2004
  • Nowadays it is necessary to manage the road system effectively because of the explosive increment of vehicles and goods. To resolve this problems through the fast upgrade of information about position and time of moving vehicles, the combined navigation system using GPS(Global Positioning System) and complementary navigation system, i.e. INS(Inertial Navigation System), DR(Dead Rocking), etc. has been used. Although GPS is popular for the vehicles in the urban canyon because of its few satellites. In this paper, position tracking algorithm is presented, which reduces vehicle position error dramatically by fusing GPS and INS sensors. And the validity of our algorithm is demonstrated by the experimental results with the real car.

  • PDF

Spatial Typification based on Heat Balance for Improving Thermal Environment in Seoul (열수지를 활용한 서울시 열환경 개선을 위한 공간 유형화)

  • Kwon, You Jin;Ahn, Saekyul;Lee, Dong Kun;Yoon, Eun Joo;Sung, Sunyong;Lee, Kiseung
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.109-126
    • /
    • 2018
  • The purpose of this study is to identify the spatial types for thermal environment improvement considering heat flux and its spatial context through empirical orthodox formulas. First, k-means clustering was used to classify values of three kinds of heat flux - latent, sensible and storage heat. Next, from the k-means clustering, we defined a type of thermal environment (type LHL) where improvement is needed for more comfortable and pleasant thermal environment in the city, among the eight types. Lastly, we compared and analyzed the characteristics of each classified thermal environmental types based on land cover types. From the study, we found that the ratio of impervious surfaces, roads, and buildings of the type LHL is higher than those of the type HLH (relatively thermal comfort environment). In order to improve the thermal environment, the following contents are proposed to urban planners and designers depending on the results of the study. a) Increase the green zone rate by 10% to reduce sensible heat; b) Reduce the percentage of impermeable surfaces and roads by 10% ; c) Latent heat increases when water and green spaces are expanded. This study will help to establish a minimum criterion for a land cover rate for the improvement of the urban thermal environment and a standard index for the thermal environmental improvement can be derived.

Analysis of the effect of street green structure on PM2.5 in the walk space - Using microclimate simulation - (가로녹지 유형이 보행공간의 초미세먼지에 미치는 영향 분석 - 미기후 시뮬레이션을 활용하여 -)

  • Kim, Shin-Woo;Lee, Dong-Kun;Bae, Chae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.61-75
    • /
    • 2021
  • Roadside greenery in the city is not only a means of reducing fine dust, but also an indispensable element of the city in various aspects such as improvement of urban thermal environment, noise reduction, ecosystem connectivity, and aesthetics. However, in studies dealing with the effect of reducing fine dust through trees in existing urban spaces, microscopic aspects such as the adsorption effect of plants were dealt with, structural changes such as the width of urban buildings and streets, and the presence or absence of trees, Impact studies that reflect the actual form of In this study, the effect of greenery composition applicable to urban space on PM2.5 was simulated through the microclimate epidemiologic model ENVI-met, and field measurements were performed in parallel to verify the results. In addition, by analyzing the results of fine dust background concentration, wind speed, and leaf area index, the sensitivity to major influencing variables was tested. As a result of the study, it was confirmed that the fine dust reduction effect was the highest in the case with a high planting amount, and the reduction effect was the greatest at a low background concentration. Based on this, the cost of planting street green areas and the effect of reducing PM2.5 were compared. The results of this study can contribute as a basis for considering the effect of pedestrian space on air quality when planning and designing street green spaces.