• Title/Summary/Keyword: Urban Campus

Search Result 119, Processing Time 0.021 seconds

Investigation of crack growth in a brick masonry wall due to twin perpendicular excavations

  • Mukhtiar Ali Soomro;Dildar Ali Mangnejo;Naeem Mangi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.251-265
    • /
    • 2023
  • In urban construction projects, it is crucial to evaluate the impacts of excavation-induced ground movements in order to protect surrounding structures. These ground movements resulting in damages to the neighboring structures and facilities (i.e., parking basement) are of main concern for the geotechnical engineers. Even more, the danger exists if the nearby structure is an ancient or masonry brick building. The formations of cracks are indicators of structural damage caused by excavation-induced ground disturbances, which pose issues for excavation-related projects. Although the effects of deep excavations on existing brick masonry walls have been thoroughly researched, the impact of twin excavations on a brick masonry wall is rarely described in the literature. This work presents a 3D parametric analysis using an advanced hypoplastic model to investigate the responses of an existing isolated brick masonry wall to twin perpendicular excavations in dry sand. One after the other, twin perpendicular excavations are simulated. This article also looks at how varying sand relative densities (Dr = 30%, 50%, 70%, and 90%) affect the masonry wall. The cracks at the top of the wall were caused by the hogging deformation profile caused by the twin excavations. By raising the relative density from 30% to 90%, excavation-induced footing settlement is greatly minimized. The crack width at the top of the wall reduces as a result of the second excavation in very loose to loose sand (Dr = 30% and 50%). While the crack width on the top of the wall increases owing to the second excavation in medium to very dense sand (Dr = 70% and 90%).

The responses of battered pile to tunnelling at different depths relative to the pile length

  • Mukhtiar Ali Soomro;Naeem Mangi;Dildar Ali Mangnejo;Zongyu Zhang
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.603-615
    • /
    • 2023
  • Population growth and urbanization prompted engineers to propose more sophisticated and efficient transportation methods, such as underground transit systems. However, due to limited urban space, it is necessary to construct these tunnels in close proximity to existing infrastructure like high-rise buildings and bridges. Battered piles have been widely used for their higher stiffness and bearing capacity compared to vertical piles, making them effective in resisting lateral loads from winds, soil pressures, and impacts. Considerable prior research has been concerned with understanding the vertical pile response to tunnel excavation. However, the three-dimensional effects of tunnelling on adjacent battered piled foundations are still not investigated. This study investigates the response of a single battered pile to tunnelling at three critical depths along the pile: near the pile shaft (S), next to the pile (T), and below the pile toe (B). An advanced hypoplastic model capable of capturing small strain stiffness is used to simulate clay behaviour. The computed results reveal that settlement and load transfer mechanisms along the battered pile, resulting from tunnelling, depend significantly on the tunnel's location relative the length of the pile. The largest settlement of the battered pile occurs in the case of T. Conversely, the greatest pile head deflection is caused by tunnelling near the pile shaft. The battered pile experiences "dragload" due to negative skin friction mobilization resulting from tunnel excavation in the case of S. The battered pile is susceptible to induced bending moments when tunnelling occurs near the pile shaft S whereas the magnitude of induced bending moment is minimal in the case of B.

Nano-silica in Holcim general use cement mortars: A comparative study with traditional and prefabricated mortars

  • Mohammadfarid Alvansazyazdi;Jorge Figueroa;Alex Paucar;Gilson Robles;Majid Khorami;Pablo M. Bonilla-Valladares;Alexis Debut;Mahdi Feizbahr
    • Advances in concrete construction
    • /
    • v.17 no.3
    • /
    • pp.135-150
    • /
    • 2024
  • Nano-silica's growing use in construction, known for enhancing strength and durability by reducing porosity, drives this research's significance, especially considering Ecuador's reliance on cement in construction. A comprehensive comparative study on mortars made with General Use cement and aggregates from Pifo and San Antonio quarries has been studied. It explores the impact of incorporating nano-silica in varying proportions (0.75%, 1.00%, 1.25%) on mortar properties, contrasting them with conventional and prefabricated mortars. laboratory Testing is conducted according to standards to assess both fresh and hardened state properties, and microscopic analysis reveals the optimal nano-silica proportion's effects on mortar characteristics. Results shows that Incorporating 0.75% nano-silica resulted in a 61% increase in compressive strength at 7 days and. For a nanosilica content of 1.25%, a 14% increase in compressive strength was observed at 28 days in relation to the conventional mortar and the permeability of the mortar decreased by 30% when adding 0.75% nanosilica. It discusses economic viability and provides insights through SEM and EDS analyses. Overall, it underscores nano-silica's potential to enhance mortar properties and its relevance in creating more efficient and durable construction materials.

Assessment of Roof-rainwater Utilization System and Drought Resistance of Ground Cover Plants (지피식물을 이용한 우수저장형 옥상녹화 시스템 및 식물 내건성 평가)

  • Kang, Tai-Ho;Zhao, Hong-Xia
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • In order to evaluate 2 extensive green roof systems(Sedum Box Roof System and Roof-rainwater Utilization System) for urban greening and select ground-cover plants, which can adapt well to the drought tolerance in an extensive green roof system on 12 species. This study was carried out in order to suggest an experimental base in assessment of the Green Roof-rainwater Utilization System and selecting the drought resistance of plants. Adopting the natural drought method, this paper studies the drought resistance of 12 kinds of ground cover plants. The drought-resistance of ground cover plants subjected to dry processing time were evaluated using relative water content on leaves, relative electric conductivity and chlorophyll content in 12 kinds of plants, and the relation between soil water content under drought stress. Drought resistance of the plants were subject to rooftop drought resistance treatments. The result showed that with the increase of stress time, the relative water content and chlorophyll content on leaves were in a downward trend while the relative electric conductivity was in an upward trend. Among the 12 species of ground cover plants, excluding Pulsatilla koreana, Ainsliaea acerifolia was selected for rooftop plants because they showed resistance to drought strongly and took adaptive ability. These results showed that drought tolerance of plants in Roof-rainwater Utilization System were stronger than the Sedum Box Roof System. Therefore, the Roof-rainwater Utilization System is good for plants. It helps them adapt well to the drought tolerance in rooftops and can be used for urban greening.

An Analysis of Satisfaction with School Forest Using Triangular Fuzzy Number (삼각퍼지수를 활용한 학교숲 만족도 분석)

  • Lee, Seul-Gi;Jang, Jung-Sun;Jung, Sung-Gwan;You, Ju-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.1-10
    • /
    • 2009
  • Wooded areas that are a part of school campuses are one type of urban forest. Most schools located in an urban environment make an excellent setting for a forest in terms of location and area. These kinds of wooded spaces also make the city greener and healthier. As a place where students spend a great deal of time, schools can also be a venue for environmental education. The creation of wooded areas in schools currently has focused on the end result only; by ignoring student needs and participation, these areas have not had a significant influence on student environmental education. Previous studies based on questionnaire survey are significant in that they have quantified subjective qualitative data via Likert Scale. There has been, however, a problem in quantifying the more ambiguous subjective data. Therefore, this paper has attempted to investigate those factors that have an influence on student satisfaction with the wooded areas of their school campus using Fuzzy Theory with elementary school students in Gyeongsangbuk-do. A change was observed in terms of the ranking of arithmetic mean values of 'school peculiarity' and 'emotion evolution' and center of gravity, which has adopted Fuzzy Theory, proving that Fuzzy Theory could rationally objectify qualitative data such as human thoughts. In terms of the influential factors on the satisfaction with school forests(regression coefficient), 'school uniqueness(0.159)' was the highest, followed by 'many trees(0.142),' 'importance of nature(0.136)' and 'emotion evolution(0.130).' This paper may therefore be useful as basic data for objective questionnaire surveys and the development of school forests.

Characteristics and Fate of Stormwater Runoff Pollutants in Constructed Wetlands (도시지역에 적용가능한 인공습지에서의 강우유출수 함유 오염물질의 거동과 특성)

  • Alihan, Jawara Christian;Maniquiz-Redillas, Marla;Choi, Jiyeon;Flores, Precious Eureka;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Nonpoint source (NPS) pollution continues to degrade the water quality. NPS pollutants signals high concerns against a sustainable environment. Low impact development (LID) is the leading management practice which regulates and treats stormwater runoff especially in highly impervious urban areas. Constructed wetlands are known to have efficient removal capability of NPS pollutants. Likewise, these LID facilities were intended to maintain the predeveloped hydrologic regime through series of mechanisms such as particle settling, filtration, plant uptake, and etc. In this study, the objective was to investigate the characteristics, fate and treatment performance of the two in-campus constructed wetlands (SW1 and SW2) which were installed adjacent to impervious roads and parking lots to treat stormwater runoff. A total of 42 storm events were monitored starting from July 2010 until November 2015. Manual grab sampling was utilized at the inlet and outlet units of each LID facilities. Based on the results, the wetlands were found to be effective in reducing 37% and 41% of the total runoff volume and peak flows, respectively. Aside from this, outflow EMCs were generally lower than the inflow EMCs in most events suggesting that the two wetlands improved the water quality of stormwater runoff. The average removal efficiency of pollutants in facilities were 63~79% in TSS, 38~54% in TN, 54% in TP and 32%~81% in metals. The results of this study recommend the use of constructed wetlands as efficient treatment facility for urban areas for its satisfactory performance in runoff and pollutant reduction.

An Application and Educational Outcomes of e-PBL (e-Project-based Learning) to University Forest Education (대학 산림교육의 웹기반 프로젝트 학습법(e-PBL) 적용 사례와 학습성과)

  • Lee, Songhee;Lee, Jaeeun;Kang, Hoduck;Yoon, Tae Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.266-279
    • /
    • 2021
  • This study applied the e-PBL (e-Project-based learning) method for "Urban Forest Management" courses in the Department of Forest Science at S University to progress in university forest education. e-PBL effectively motivates self-directed learning, problem-solving, communication skills, and learners' responsibility by enabling them to choose, design, and perform their projects. Due to the COVID-19 pandemic in 2020, learners were encouraged to use online media to carry out projects and submit presentations for the campus forest. Learners' educational effects were subsequently investigated through a five-point Likert scale. This study discovered a positive effect on learners' motivation and interest (4.17) through e-PBL. Learners responded that e-PBL also helped their understanding regarding the subject (4.17). In addition, this study provided evidence that the e-PBL method was helpful in problem-solving (4.25), communication (4.33), and decision-making skills (4.21). According to learners' responses, there are positive indications that learners were satisfied with e-PBL. Learners responded that interactions and communications with team members could improve their understanding of the subject. Hence, there is scope for improving an efficient and successful e-PBL model suitable for university forest education by providing more efficient instructional time management, e-PBL method guidelines, and institutional support.

Ground Settlement Monitoring using SAR Satellite Images (SAR 위성 영상을 이용한 도심지 지반 침하 모니터링 연구)

  • Chungsik, Yoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.55-67
    • /
    • 2022
  • In this paper, fundamentals and recent development of the interferometric synthetic aperture radar, known as InSAR, technique for measuring ground deformation through satellite image analysis are presented together with case histories illustrating its applicability to urban ground deformation monitoring. A study area in Korea was selected and processed based on the muti-temporal time series InSAR analysis, namely SBAS (Small Baseline Subset)-InSAR and PS (Persistent Scatterers)-InSAR using Sentinel-1A SAR images acquired from the year 2014 onward available from European Space Agency Copernicus Program. The ground settlement of the study area for the temporal window of 2014-2022 was evaluated from the viewpoint of the applicability of the InSAR technique for urban infrastructure settlement monitoring. The results indicated that the InSAR technique can reasonably monitor long-term settlement of the study area in millimetric scale, and that the time series InSAR technique can effectively measure ground settlement that occurs over a long period of time as the SAR satellite provides images of the Korean Peninsula at regular time intervals while orbiting the earth. It is expected that the InSAR technique based on higher resolution SAR images with small temporal baseline can be a viable alternative to the traditional ground borne monitoring method for ground deformation monitoring in the 4th industrial era.

Development of Storm Sewer Numerical Model for Simulation of Coastal Urban Inundation due to Storm Surge and Rainfall (폭풍해일과 강우에 의한 해안 도시 범람 수치모의를 위한 우수관망 수치모형의 개발)

  • Yoon, Sung Bum;Lee, Jaehwang;Kim, Gun Hyeong;Song, Ji Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.292-299
    • /
    • 2014
  • Since most of the researches on the coastal inundation due to typhoons have considered only storm surges, an additional inundation due to rainfall has been neglected. In general, typhoons are natural disasters being accompanied by the rainfall. Thus, it is essential to consider the effect of rainfall in the numerical simulation of coastal inundation due to storm surges. Because the rainwater is discharged to the sea through the storm sewer system, it should be included in the numerical simulation of storm surges to obtain reasonable results. In this study an algorithm that can deal with the effects of rainfall and sewer system is developed and combined with a conventional storm surge numerical model. To test the present numerical model various numerical simulations are conducted using the simplified topography for the cases including the inundation due to rainfall, the drainage of rainwater, the backflow of sea water, and the increase of sea water level due to drainage of rainwater. As a result, it is confirmed that the basic performance of the present model is satisfactory for various flow situations.

Estimation of Gas-particle partitioning Coefficients (Kp) of Carcinogenic polycyclic Aromatic hydrocarbons in Carbonaceous Aerosols Collected at Chiang - Mai, Bangkok and hat-Yai, Thailand

  • Pongpiachan, Siwatt;Ho, Kin Fai;Cao, Junji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2461-2476
    • /
    • 2013
  • To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days st three different atmospheric layer at the heart of chiang-Mai, bangkok and hat-Yai from December 2006 to February 2007. A DRI model 2001 Themal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon(OC) and elemental carbon content in $PM_{10}$. Diurnal and vertical variability was also carefully investigated. In general, OC and EC contenttration shoeed the highest values at the monitoring period o 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis nighttime. Morning peaks of carboaceous compounds were observed during the sampling period of 06:00 -09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime partculate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifrtime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approsimately ten time shigher then those air sample collected at prince of songkla University Hat-Yai campus corpse incinerator and fish-can maufacturing factory but only slightly higher than those of rice straw burnig in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in $PM_{10}$, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas-particle partitioning of low molecular weight PAHs, whereas both absorption and adsorption tend to account for gas-particle partitioning of high molecular weight PAHs in urban residential zones of Thailand. Interestingly, the absorption mode alone plays a minor role in gas-partcle partitiining of PAHs in Chiang-Mai, Bangkok and hat-Yai.