• Title/Summary/Keyword: Urban Autonomous Driving

Search Result 69, Processing Time 0.019 seconds

Analysis of Autonomous Vehicles Risk Cases for Developing Level 4+ Autonomous Driving Test Scenarios: Focusing on Perceptual Blind (Lv 4+ 자율주행 테스트 시나리오 개발을 위한 자율주행차량 위험 사례 분석: 인지 음영을 중심으로)

  • Seung min Oh;Jae hee Choi;Ki tae Jang;Jin won Yoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.173-188
    • /
    • 2024
  • With the advancement of autonomous vehicle (AV) technology, autonomous driving on real roads has become feasible. However, there are challenges in achieving complete autonomy due to perceptual blind areas, which occur when the AV's sensory range or capabilities are limited or impaired by surrounding objects or environmental factors. This study aims to analyze AV accident patterns and safety issues of perceptual blind area that may occur in urban areas, with the goal of developing test scenarios for Level 4+ autonomous driving. It utilized AV accident data from the California Department of Motor Vehicles (DMV) to compare accident patterns and characteristics between AVs and conventional vehicles based on activation status of autonomous mode. It also categorized AV disengagement data to identify types and real-world cases of disengagements caused by perceptual blind areas. The analysis revealed that AVs exhibit different accident types due to their safe driving maneuvers, and three types of perceptual blind area scenarios were identified. The findings of this study serve as crucial foundational data for developing Level 4+ autonomous driving test scenarios, enabling the design of efficient strategies to mitigate perceptual blind areas in various scenarios. This, in turn, is expected to contribute to the effective evaluation and enhancement of AV driving safety on real roads.

Efficient Crossroad Wireless LAN Vehicular Communication Network for Remote Driving and Monitoring Autonomous Vehicle (무인자동차 원격운행 및 모니터링을 위한 효율적인 사거리 교차로 무선랜 자동차통신망)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.3
    • /
    • pp.387-392
    • /
    • 2014
  • Now a days, there are various application functions to transmit from vehicles to the Internet and vice versa. And the communication can be operated through a roadside infrastructure including with possible use of routing protocols. Specifically, autonomous vehicles for remote driving and monitoring requires transmitting of high depth of multimedia such as video. Especially in a populated urban area, an efficient network is vital because of handling a great amount of the data. Therefore, in this paper, efficient network topology for a crossroad in urban area is suggested by performance evaluation of vehicular networks using a wireless LAN and a routing protocol. For the performance evaluation, various vehicular network topologies are designed and simulated in OPNet simulator.

A Development of the Autonomous Driving System based on a Precise Digital Map (정밀 지도에 기반한 자율 주행 시스템 개발)

  • Kim, Byoung-Kwang;Lee, Cheol Ha;Kwon, Surim;Jung, Changyoung;Chun, Chang Hwan;Park, Min Woo;Na, Yongcheon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.2
    • /
    • pp.6-12
    • /
    • 2017
  • An autonomous driving system based on a precise digital map is developed. The system is implemented to the Hyundai's Tucsan fuel cell car, which has a camera, smart cruise control (SCC) and Blind spot detection (BSD) radars, 4-Layer LiDARs, and a standard GPS module. The precise digital map has various information such as lanes, speed bumps, crosswalks and land marks, etc. They can be distinguished as lane-level. The system fuses sensed data around the vehicle for localization and estimates the vehicle's location in the precise map. Objects around the vehicle are detected by the sensor fusion system. Collision threat assessment is performed by detecting dangerous vehicles on the precise map. When an obstacle is on the driving path, the system estimates time to collision and slow down the speed. The vehicle has driven autonomously in the Hyundai-Kia Namyang Research Center.

Analysis on the Importance Rank of Service Components of Autonomous Mobility-on-Demand Service by Potential User Groups (수요응답형 자율주행 대중교통 서비스의 잠재적 이용자 집단 간 서비스 요소별 중요도에 관한 분석)

  • Sungju Seo;Jinhee Kim;Jaehyung Lee;Byungsoo Yang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.177-193
    • /
    • 2022
  • In the near future, it is expected that the use of autonomous mobility-on-demand services will increase. Considering its complicated service components, including vehicle convenience, driving and matching speed, and platform convenience, the priorities of them will need to be determined for a successful establishment. In this context, this study examined the importance rank of each service component through an online survey of potential users of autonomous mobility-on-demand services. As a result of the AHP (Analytic Hierarchy Process) with respect to the upper-level components, driving and matching speed component is selected as most important, followed by platform convenience and vehicle convenience. Mean rank analysis with respect to lower-level components showed that the in-vehicle congestion level of vehicle convenience, waiting time of driving and matching speed, and pre-booking availability of platform convenience each ranked first. Additional analysis regarding each group was conducted to establish a group-specific strategy. As a result, it would be better to focus on a vehicle than a mobile platform when designing services for the region with a high proportion of the older. Moreover, it is recommended to speed up the driving and matching speeds more than the current public transport, alleviate in-vehicle congestion, and enable the users to book the schedule in advance.

Laser Scanner based Static Obstacle Detection Algorithm for Vehicle Localization on Lane Lost Section (차선 유실구간 측위를 위한 레이저 스캐너 기반 고정 장애물 탐지 알고리즘 개발)

  • Seo, Hotae;Park, Sungyoul;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.24-30
    • /
    • 2017
  • This paper presents the development of laser scanner based static obstacle detection algorithm for vehicle localization on lane lost section. On urban autonomous driving, vehicle localization is based on lane information, GPS and digital map is required to ensure. However, in actual urban roads, the lane data may not come in due to traffic jams, intersections, weather conditions, faint lanes and so on. For lane lost section, lane based localization is limited or impossible. The proposed algorithm is designed to determine the lane existence by using reliability of front vision data and can be utilized on lane lost section. For the localization, the laser scanner is used to distinguish the static object through estimation and fusion process based on the speed information on radar data. Then, the laser scanner data are clustered to determine if the object is a static obstacle such as a fence, pole, curb and traffic light. The road boundary is extracted and localization is performed to determine the location of the ego vehicle by comparing with digital map by detection algorithm. It is shown that the localization using the proposed algorithm can contribute effectively to safe autonomous driving.

Accurate Parked Vehicle Detection using GMM-based 3D Vehicle Model in Complex Urban Environments (가우시안 혼합모델 기반 3차원 차량 모델을 이용한 복잡한 도시환경에서의 정확한 주차 차량 검출 방법)

  • Cho, Younggun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Recent developments in robotics and intelligent vehicle area, bring interests of people in an autonomous driving ability and advanced driving assistance system. Especially fully automatic parking ability is one of the key issues of intelligent vehicles, and accurate parked vehicles detection is essential for this issue. In previous researches, many types of sensors are used for detecting vehicles, 2D LiDAR is popular since it offers accurate range information without preprocessing. The L shape feature is most popular 2D feature for vehicle detection, however it has an ambiguity on different objects such as building, bushes and this occurs misdetection problem. Therefore we propose the accurate vehicle detection method by using a 3D complete vehicle model in 3D point clouds acquired from front inclined 2D LiDAR. The proposed method is decomposed into two steps: vehicle candidate extraction, vehicle detection. By combination of L shape feature and point clouds segmentation, we extract the objects which are highly related to vehicles and apply 3D model to detect vehicles accurately. The method guarantees high detection performance and gives plentiful information for autonomous parking. To evaluate the method, we use various parking situation in complex urban scene data. Experimental results shows the qualitative and quantitative performance efficiently.

Robust 3D Object Detection through Distance based Adaptive Thresholding (거리 기반 적응형 임계값을 활용한 강건한 3차원 물체 탐지)

  • Eunho Lee;Minwoo Jung;Jongho Kim;Kyongsu Yi;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.106-116
    • /
    • 2024
  • Ensuring robust 3D object detection is a core challenge for autonomous driving systems operating in urban environments. To tackle this issue, various 3D representation, including point cloud, voxels, and pillars, have been widely adopted, making use of LiDAR, Camera, and Radar sensors. These representations improved 3D object detection performance, but real-world urban scenarios with unexpected situations can still lead to numerous false positives, posing a challenge for robust 3D models. This paper presents a post-processing algorithm that dynamically adjusts object detection thresholds based on the distance from the ego-vehicle. While conventional perception algorithms typically employ a single threshold in post-processing, 3D models perform well in detecting nearby objects but may exhibit suboptimal performance for distant ones. The proposed algorithm tackles this issue by employing adaptive thresholds based on the distance from the ego-vehicle, minimizing false negatives and reducing false positives in the 3D model. The results show performance enhancements in the 3D model across a range of scenarios, encompassing not only typical urban road conditions but also scenarios involving adverse weather conditions.

A Basic Study on the Extraction of Dangerous Region for Safe Landing of self-Driving UAMs (자율주행 UAM의 안전착륙을 위한 위험영역 추출에 관한 기초 연구)

  • Chang min Park
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.24-31
    • /
    • 2023
  • Recently, interest in UAM (Urban Air Mobility, UAM), which can take off and land vertically in the operation of urban air transportation systems, has been increasing. Therefore, various start-up companies are developing related technologies as eco-friendly future transportation with advanced technology. However, studies on ways to increase safety in the operation of UAM are still insignificant. In particular, efforts are more urgent to improve the safety of risks generated in the process of attempting to land in the city center by UAM equipped with autonomous driving. Accordingly, this study proposes a plan to safely land by avoiding dangerous region that interfere when autonomous UAM attempts to land in the city center. To this end, first, the latitude and longitude coordinate values of dangerous objects observed by the sense of the UAM are calculated. Based on this, we proposed to convert the coordinates of the distorted planar image from the 3D image to latitude and longitude and then use the calculated latitude and longitude to compare the pre-learned feature descriptor with the HOG (Histogram of Oriented Gradients, HOG) feature descriptor to extract the dangerous Region. Although the dangerous region could not be completely extracted, generally satisfactory results were obtained. Accordingly, the proposed research method reduces the enormous cost of selecting a take-off and landing site for UAM equipped with autonomous driving technology and contribute to basic measures to reduce risk increase safety when attempting to land in complex environments such as urban areas.

  • PDF

A Study on Data Model Conversion Method for the Application of Autonomous Driving of Various Kinds of HD Map (다양한 정밀도로지도의 자율주행 적용을 위한 데이터 모델 변환 방안 연구)

  • Lee, Min-Hee;Jang, In-Sung;Kim, Min-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.39-51
    • /
    • 2021
  • Recently, there has been much interest in practical use of standardized HD map that can effectively define roads, lanes, junctions, road signs, and road facilities in autonomous driving. Various kinds of de jure or de facto standards such as ISO 22726-1, ISO 14296, HERE HD Live map, NDS open lane model, OpenDRIVE, and NGII HD map are currently being used. However, there are lots of differences in data modeling among these standards, it makes difficult to use them together in autonomous driving. Therefore, we propose a data model conversion method to enable an efficient use of various kinds of HD map standards in autonomous driving in this study. Specifically, we propose a conversion method between the NGII HD map model, which is easily accessible in the country, and the OpenDRIVE model, which is commonly used in the autonomous driving industry. The proposed method consists of simple conversion of NGII HD map layers into OpenDRIVE objects, new OpenDRIVE objects creation corresponding to NGII HD map layers, and linear transformation of NGII HD map layers for OpenDRIVE objects creation. Finally, we converted some test data of NGII HD map into OpenDRIVE objects, and checked the conversion results through Carla simulator. We expect that the proposed method will greatly contribute to improving the use of NGII HD map in autonomous driving.

Study on the Failure of Autonomous Mobility in World Network Cities

  • Dae Sung Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.73-81
    • /
    • 2023
  • Globalized cities are currently showing changes due to autonomous driving (AD). It is also maximizing globalization connections in cities where autonomous mobility is as complex as AD. The purpose of this study is to reveal that cities that realize AD and mobility will grow into globalized cities. Several cities, including New York and Shanghai, have attempted and are in progress, but failed cities are increasing. Although the technology of AD and the trust of citizens are prioritized, the city that has built the city's infrastructure is expected to be a city that has succeeded in AD. This is because commercialized cities or AVs will become hubs for mobility globalization, excluding rapid climate change or AV companies, and empirical analysis has been conducted that if AVs fail in metropolitan New York due to urban complexity (population density), urban economy size (GRDP), patents, number of consumers, infrastructure public EV chargers, and road quality. It examines whether the realization of AD by region and country affects overall national innovation. As a result, even if AV succeeds in large cities such as New York, Seoul, which has a higher population density (complexity), has a negative meaning, and a more similar Tokyo has a positive meaning. It can be seen that regional research on AV should also be prioritized in large cities such as Shanghai. This means that in order for AV to be realized in each city, the construction of AI infrastructure data must be actively changed to establish globalization of cities for economic growth as autonomous mobility.