Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.18
no.1
/
pp.83-90
/
2020
The Graphite Isotope Ratio Method (GIRM) can verify non-proliferation of nuclear weapon by estimating the total plutonium production in a graphite-moderated reactor. Using the reactor, plutonium is generated and accumulated through the 238U neutron capture reaction, and impurities in the graphite are converted to nuclides due to the nuclear reaction. Therefore, the amount of plutonium production and concentration of the impurities are correlated. However, the plutonium production cannot be predicted using only the absolute concentration of the impurities. It can only be predicted when the initial concentration of the impurities is obtained because the concentration, at a certain time, depends on it. Nevertheless, the ratios of the isotopes in an element are known regardless of the impurity of an element in the graphite moderator. Thus, the correlation between the isotope ratio and amount of plutonium produced helps predict plutonium production in a graphite-moderated reactor. Boron, Lithium, Chlorine, Titanium, and Uranium are known as indicator elements in the GIRM. To assess whether the correlation between the indicator isotope and amount of plutonium produced is independent of the initial concentration of the impurities, four different impurity compositions of graphite were used. 10B/11B, 36Cl/35Cl, 48Ti/49Ti, and 235U/238U had a consistent correlation with the cumulative plutonium production, regardless of the initial impurity concentration of the graphite, because these isotopes were not generated through the nuclear reaction of other elements. On the other hand, the correlation between 6Li/7Li and plutonium production depended on the initial concentration of the impurities in graphite. Although 7Li can be produced through the neutron capture reaction of 6Li, the (n, α) reaction of 10B was the major source of 7Li. Therefore, the initial concentration of 10B affected the production of 7Li, making Li unsuitable as an indicator element for the GIRM.
A guanidinium salt of $[U(PW_{11}O_{39})_2]^{10-}$, the solubility of which is adequate for crystal growing, has been synthesized. Using this salt or potassium salt, we have measured the stability of $[U(PW_{11}O_{39})_2]^{10-}$as a function of pH of the solution and found that the anion is stable for the pH range 3~7. We have developed a colorimetric method for determining the concentration of $U^{4+}$. In this method$PW_{11}O_{39}^{7-}$ is added to$U^{4+}$ in such a quantity that the mole ratio $PW_{11}O_{39}^{7-}/ U^{4+}$exceeds 2 and the intensity of the 22.7kK band (${\varepsilon}$1030 M-1cm-1) is measured. In order to develop a continuous method to recover uranium, we have determined the amount of recoverd$PW_{11}O_{39}^{7-}$ after decomposing $[U(PW_{11}O_{39})_2]^{10}$- by adding either a base or an oxidizing agent. The percentage of $PW_{11}O_{39}^{7-}$recovered was approximately 70% when a base was used and approximately 80% when$K_2S_2O_8$ was used. A colorimetric method for determining $PW_{11}O_{39}^{7-}$ has also been developed.
The specific radioactivity concentrations in the coal fly ash obtained from heat producing stations in Korea were analyzed and its radiological hazard for reuse in construction purpose was evaluated. The concentrations of uranium isotopes in the real fly ash measured by TBP solvent extraction method and $\alpha$-spectrometer were found to be about 116.1 Bq $kg^{-1}$ for $^{238}U$, 5.01 Bq $kg^{-1}$ for $^{235}U$, and 121.2 Bq $kg^{-1}$ for $^{234}U$, respectively. The activity ratio of $^{234}U/^{238}U$, in the coal fly ash was in $1.04\;{\pm}\;0.03$, which is similar to that of uncontaminated Korean soil in natural conditions (1.14). The specific radioactivities of $^{226}Ra,\;^{232}Th,\;and\;^{40}K$ in the coal fly ash were also determined using $\gamma$-spectrometer with a HPGe detector The results showed that $^{226}Ra,\;^{232}Th,\;and\;^{40}K$ in the coal fly ash were in concentrations of $101.7{\sim}113.9$, $39.5{\sim}54.2\;and\;315.0{\sim}990.6$ Bq $kg^{-1}$, respectively. With the specific radioactivities obtained from $\gamma$-spectrometric measurements of the coal fly ash, its radiological hazard for reuse was evaluated. The result showed that the radioactivity of the coal fly ash was in permissible level.
The slightly hyperstoichiometric uranium dioxide, i.e. U $O_{2.005}$ and U $O_{2.01}$ within a range of the requirement for the use of a nuclear fuel, were sintered directly in an atmosphere of $CO_2$/CO mixture without any succeeding reduction process. The kinetics of sintering in the late stage were investigated for various O/U ratios. A sintering diagram, which show the relation of Temperature-Time-Density-Grain size, was established for each O/U ratio. Only by controlling the oxygen partial pressure in the sintering atmosphere, U $O_2$ pellet could be sintered very easily at low temperature 1050$^{\circ}$~120$0^{\circ}C$ with a density above 95% T.D. and average grain size above 7${\mu}{\textrm}{m}$. It was found that the rate of grain growth follows D=(Kt)$^{1}$4/ in the late stage of sintering. And the activation energies for grain growth in the final sintering stage were found to be 75, 64 and 62kca1/mo1 for U $O_{2.005}$, U $O_{2.01}$ and U $O_{2.10}$, respectively. Although no significant differences are obtained between the activation energies for different O/U ratios, the sinterability is enhanced considerably with increasing the oxygen partial pressure in the sintering atmosphere.tmosphere.
Yuna Oh;Daehyun Shin;Danu Kim;Soyoung Jeon;Seon-ok Kim;Minhee Lee
Economic and Environmental Geology
/
v.56
no.5
/
pp.603-618
/
2023
This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution,and by restraining the formation of U-carbonate complexes in solution.
PP-g-(AN/Sty) was synthesized by grafting with acrylonitrile (AN) and styrene (Sty) onto PP staple fiber using an electron beam accelerator and followed by amidoximination and phosphorylation. Mole fraction of AN in the graft chain increased with the increase of the AN content in the monomer mixture. The highest AN grafting yield of 45% was obtained at a monomer ratio of 40 vol% AN/60 vol% Sty. Mole fraction of AN in the graft chain decreased with the increase of methanol amount used its solvent. As reaction temperature increased, the grafting yield of copolymer increased and reached equilibrium at 50$^{\circ}C$. Amount of amidoxime group in fibrous ion exchanger was increased as increasing amount of hydroxylamine, and the maximum content of amidoxime group was observed at 5.8 mmol/g with the 9 wt% hydroxylamine concentration. Content of phosphorous group in fibrous ion exchanger increased up to 0.5 N phosphoric acid concentration, and then leveled off. The adsorption ability of the copolymer for uranyl ion by the chelating adsorbents was in the following order : bifunctional PP-g-(AN/sty) > amidoximated PP-g-(AN/Sty) > phosphorylated PP-g-(AN/Sty).
Kim, Gha-Young;Kim, Tack-Jin;Jang, Junhyuk;Kim, Si-Hyung;Lee, Chang Hwa;Lee, Sung-Jai
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.16
no.3
/
pp.309-313
/
2018
In this study, we prepared Li-K-Cd alloy, which meets the requirement of eutectic ratio of Li:K, to maintain the operating temperature of the drawdown process at $500^{\circ}C$ and to achieve the reuse of LiCl-KCl molten salt. The prepared Li-K-Cd alloys were added to LiCl-KCl salt bearing U and Nd at $500^{\circ}C$ to investigate the removal of $UCl_3$ in the salt. The reduction of $UCl_3$ in the salt was examined by measuring the OCP value of salt and analyzing the salt composition by ICP-OES. Reduction was also visually confirmed by change of salt color from dark purple to white. The experimental results reveal that the prepared Li-K-Cd alloy has reductive extractability for $UCl_3$ in salt. By improving the preparation method, the Li-K-Cd alloy can be applied to the drawdown process.
An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.
Na, Young Su;Hong, Seong-Ho;Song, Jin Ho;Hong, Seong-Wan
Nuclear Engineering and Technology
/
v.48
no.6
/
pp.1330-1337
/
2016
A visualization test of the fuel-coolant interaction in the Test for Real cOrium Interaction with water (TROI) test facility was carried out. To experimentally simulate the In-Vessel corium Retention (IVR)- External Reactor Vessel Cooling (ERVC) conditions, prototypic corium was released directly into the coolant water without a free fall in a gas phase before making contact with the coolant. Corium (34.39 kg) consisting of uranium oxide and zirconium oxide with a weight ratio of 8:2 was superheated, and 22.54 kg of the 34.39 kg corium was passed through water contained in a transparent interaction vessel. An image of the corium jet behavior in the coolant was taken by a high-speed camera every millisecond. Thermocouple junctions installed in the vertical direction of the coolant were cut sequentially by the falling corium jet. It was clearly observed that the visualization image of the corium jet taken during the fuel-coolant interaction corresponded with the temperature variations in the direction of the falling melt. The corium penetrated through the coolant, and the jet leading edge velocity was 2.0 m/s. Debris smaller than 1 mm was 15% of the total weight of the debris collected after a fuel-coolant interaction test, and the mass median diameter was 2.9 mm.
The effects of N $b_2$$O_{5}$ and oxygen potential on the densification and grain growth of U $O_2$ fuel have been investigated.0.3 wt% N $b_2$$O_{5}$ -doped U $O_2$fuel pellets were sintered at 1$700^{\circ}C$ for 4 hours in sintering atmospheres which have various ratios of $H_2O$ to $H_2$ gas. Compared with those of undoped U $O_2$ pellets, the sintered density and grain size of the 0.3 wt% N $b_2$$O_{5}$ -doped U $O_2$ pellet increase under the $H_2O$/ $H_2$ gas ratio of 5.0$\times$10$^{-3}$ to 1.0$\times$10$^{-2}$ and under the $H_2O$/ $H_2$gas ratio of 5.0$\times$10$^{-3}$ to $1.5\times$10$^{-2}$ , respectively. The sintering of U $O_2$fuel pellets containing 0.1 wt% to 0.5 wt% N $b_2$$O_{5}$ was carried out at 168$0^{\circ}C$ for 4 hours. The enhancing effect of N $b_2$$O_{5}$ on the sintered density and grain size becomes larger as the N $b_2$$O_{5}$ content increases. The solubility limit of N $b_2$$O_{5}$ in U $O_{2}$ seems to be between 0.3 wt% and 0.5 wt%, and beyond the solubility limit the second phase whose composition corresponds near to N $b_2$U $O_{6}$ is precipitated on grain boundary. The enhancement of densification and grain growth in U $O_2$ is attributed to the increased concentration of a uranium vacancy which is formed by the interstitial N $b^{4+}$ ion in the U $O_2$ lattice.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.