Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2018.16.3.309

Use of Li-K-Cd Alloy to Remove MCl3 in LiCl-KCl Eutectic Salt  

Kim, Gha-Young (Korea Atomic Energy Research Institute)
Kim, Tack-Jin (Korea Atomic Energy Research Institute)
Jang, Junhyuk (Korea Atomic Energy Research Institute)
Kim, Si-Hyung (Korea Atomic Energy Research Institute)
Lee, Chang Hwa (Korea Atomic Energy Research Institute)
Lee, Sung-Jai (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.16, no.3, 2018 , pp. 309-313 More about this Journal
Abstract
In this study, we prepared Li-K-Cd alloy, which meets the requirement of eutectic ratio of Li:K, to maintain the operating temperature of the drawdown process at $500^{\circ}C$ and to achieve the reuse of LiCl-KCl molten salt. The prepared Li-K-Cd alloys were added to LiCl-KCl salt bearing U and Nd at $500^{\circ}C$ to investigate the removal of $UCl_3$ in the salt. The reduction of $UCl_3$ in the salt was examined by measuring the OCP value of salt and analyzing the salt composition by ICP-OES. Reduction was also visually confirmed by change of salt color from dark purple to white. The experimental results reveal that the prepared Li-K-Cd alloy has reductive extractability for $UCl_3$ in salt. By improving the preparation method, the Li-K-Cd alloy can be applied to the drawdown process.
Keywords
Liquid metal extraction; Li-K-Cd alloy; Uranium chloride; LiCl-KCl eutectic salt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kinoshita, T. Tsukada, and T. Ogata, "Single-stage extraction test with continuous flow of molten LiCl-KCl and liquid Cd for pyro-reprocessing of metal FBR fuel", J. Nucl. Sci. Tech., 44(12), 1557-1564 (2007).   DOI
2 K. Kinoshita and T. Tsukada, "Countercurrent extraction test with continuous flow of molten LiCl-KCl salt with liquid Cd for pyro-reprocessing of metal FBR fuel", J. Nucl. Sci. Tech., 47(2), 211- 218 (2010).   DOI
3 S. Delpech, E. Merle-Lucotte, D. Heuer, M. Allibert, V. Ghetta, C. Le-Brun, X. Doligez, and G. Picard, "Reactor physic and reprocessing scheme for innovative molten salt reactor system", J. Fluor. Chem., 130(1), 11-17 (2009).   DOI
4 W. Cohen, Q. Zhou, E. Wu, and J. Zhang, "Molten fluoride salt and liquid metal multistage extraction model", Prog. Nucl. Energy, 97, 214-219 (2017).   DOI
5 H. Moriyama, H. Yamana, S. Nishikawa, S. Shibata, N. Wakayama, Y. Miyashita, K. Miritani, and T. Mitsugashira, "Thermodynamics of reductive extraction of actinides and lanthanides from molten chloride salt in liquid metal", J. Alloys and Compd., 271-273, 587-591 (1998).   DOI
6 J. Finne, G. Picard, S. Sanchez, E. Walle, O. Conocar, J. Lacquement, J.-M. Boursier, and D. Noel, "Molten salt/ liquid metal extraction: Electrochemical determination of activity coefficients in liquid metals", J. Nuc. Mats., 344(1-3), 165-168 (2005).   DOI
7 A.S. Basin, A.B. Kaplun, A.B. Meshalkin, and N.F. Uvaro, "The LiCl-KCl binary system", Russ. J. Inorg. Chem., 53(9), 1509-1511 (2008).   DOI
8 J.P. Ackerman and J. L. Settle, "Distribution of plutonium, americium, and several rare earth fission product elements between liquid cadmium and LiCl-KCl eutectic", J. Alloys and Compd., 199(1-2), 77-84 (1993).   DOI
9 L.M. Ferris, J.C. Mailen, and F.J. Smith, "Equilibrium distribution of actinide and lanthanide elements between molten fluoride salts and liquid bismuth solutions", J. Inorg. Nucl. Chem., 32(6), 2019-2035 (1970).   DOI
10 L.M. Ferris, J.C. Mailen, and F.J. Smith, "Chemistry and thermodynamics of the distribution of lanthanide and actinide elements between molten LiF-BeF2 and liquid bismuth solutions", J. Inorg. Nucl. Chem., 33(5), 1325-1335 (1971).   DOI
11 L.S. Chow, J.K. Basco, E.L. Carls, and T.R. Johnson, Testing of pyrochemical centrifugal contactors, CONF- 9606116-64, ANL/CMP/CP-88009 (1996).