• 제목/요약/키워드: Uranium Metal

검색결과 130건 처리시간 0.024초

PRELIMINARY STUDY ON THE ALPHA TRACK ANALYSIS OF SPHERICAL URANIUM METAL PARTICLES

  • Pyo Hyung-Yeol;Kim Jong-Yun;Lee Myung-Ho;Park Yong-Jun;Jee Kwang-Yong;Kim Won-Ho
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.353-358
    • /
    • 2006
  • Alpha track analysis for the determination of the trace amount of alpha emitting nuclides in a very small particle was performed as an efficient and powerful technique during safeguard inspection. Metal particles with well-defined spherical shape, size and isotopic compositions as a reference material were used to correlate the number of tracks or track diameter with an isotopic composition eventually to identify the uranium enrichment in the environmental swipe samples. Slopes in the number of tracks versus the exposure time curve provide a simple insight into the uranium enrichment of an unknown particle. Low enriched uranium metal particles result in slopes still steeper than the depleted or natural uranium metal particles. In addition, a linear relationship between track diameter and particle size Is thought to be a useful first stage analytical tool as an efficient and convenient inspection guide. The significance of the simple linear model was also judged using the usual statistical tests.

Electrochemical Behavior for a Reduction of Uranium Oxide in a $LiCl-Li_{2}O$ Molten Salt with an Integrated Cathode assembly

  • Park, Sung-Bin;Park, Byung-Heung;Seo, Chung-Seok;Jung, Ki-Jung;Park, Seong-Won
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.39-50
    • /
    • 2005
  • Electrolytic reduction of uranium oxide to uranium metal was studied in a $LiCl-Li_{2}O$ molten salt system. The reduction mechanism of the uranium oxide to a uranium metal has been studied by means of a cyclic voltammetry. Effects of the layer thickness of the uranium oxide and the thickness of the MgO on the overpotential of the cathode and the anode were investigated by means of a chronopotentiometry. From the cyclic voltamograms, the decomposition potentials of the metal oxides are the determining factors for the mechanism of the reduction of the uranium oxide in a $LiCl-3\;wt{\%} Li_{2}O$ molten salt and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current and the transfer coefficient based on the Tafel behavior were obtained with regard to the layer thickness of the uranium oxide which is loaded into the porous MgO membrane and the thickness of the porous MgO membrane. The maximum allowable currents for the changes of the layer thickness of the uranium oxide and the thickness of the MgO membrane were also obtained from the limiting potential which is the decomposition potential of LiCl.

  • PDF

저 탄소강 음극을 사용한 금속우라늄의 용융염 전해정련에 관한 연구 (A Study on Molten Salt Electrorefining of Uranium Metal Using Low Carbon Steel Cathode)

  • 양영석;강영호;황성찬
    • 공업화학
    • /
    • 제10권8호
    • /
    • pp.1119-1123
    • /
    • 1999
  • 본 연구는 용융염계에서 우라늄금속의 건식전해정련공정을 개발하기 위해서 수행되었다. 금속우라늄과 $CdCl_2$와의 반응은 약 3시간이 소요되었으며, 모든 전해전달실험에서 우라늄금속 석출물들은 음극표면에서 성장한 수지상으로 얻어졌다. 수지상의 형태는 부가전압에 따라 변화되었으며, 전류효율은 전류밀도가 증가함에 따라 감소하였다. 반응시간이 6시간 경과된 후에 석출속도는 변화하지 않았으며, 전류밀도가 $100{\sim}150mA/cm^2$이고 교반속도가 약 75 rpm일 때 최대석출속도를 얻었다. 또한, 전류효율은 음극에 있는 나선형 홈의 피치가 작을수록 증가되었다.

  • PDF

Effect of oxygen containing compounds in uranium tetrafluoride on its non-adiabatic calciothermic reduction characteristics

  • Gupta, Sonal;Kumar, Raj;Satpati, Santosh K.;Sahu, Manharan L.
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1931-1938
    • /
    • 2021
  • Uranium ingot is produced by metallothermic reduction of uranium tetrafluoride using magnesium or calcium as reductant. Presence of oxygen containing compounds viz. uranyl fluoride and uranium oxide in the starting uranium fluoride has a significant effect on the firing time, final temperature of the charge, slag-metal separation and hence the metal recovery. As reported in the literature, the maximum tolerable limit for uranyl fluoride in the UF4 is 2.5 wt% and limit for uranium oxide content is in the range 2-3 wt%. No theoretical or experimental basis is available till date for these limits. Analyses have been carried out in this study to understand the effect of UO2F2 concentration in the starting fluoride on the final temperature of the products and thus the reduction characteristics. UF4 having uranyl fluoride concentration, less than as well as more than 2.5 wt%, have been investigated. Thermodynamic calculations have been carried out to arrive at a general expression for the final temperature attained by the products during calciothermic reduction of UF4. Finally, an upper limit for the oxygen containing impurities has been estimated using the CaO-CaF2 phase diagram.

DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

  • Ryu, Ho Jin;Kim, Chang Kyu;Sim, Moonsoo;Park, Jong Man;Lee, Jong Hyun
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.979-986
    • /
    • 2013
  • Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 $g-U/cm^3$ were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compounds by a chemical reaction of the uranium particles and aluminum matrix. Thus, these target plates can be treated with the same alkaline dissolution process that is used for conventional $UAl_x$ dispersion targets, while increasing the uranium density in the target plates.

Study of the Changes in Composition of Ammonium Diuranate with Progress of Precipitation, and Study of the Properties of Ammonium Diuranate and its Subsequent Products Produced from both Uranyl Nitrate and Uranyl Fluoride Solutions

  • Manna, Subhankar;Kumar, Raj;Satpati, Santosh K.;Roy, Saswati B.;Joshi, Jyeshtharaj B.
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.541-548
    • /
    • 2017
  • Uranium metal used for fabrication of fuel for research reactors in India is generally produced by magnesio-thermic reduction of $UF_4$. Performance of magnesio-thermic reaction and recovery and quality of uranium largely depends on properties of $UF_4$. As ammonium diuranate (ADU) is first product in powder form in the process flow-sheet, properties of $UF_4$ depend on properties of ADU. ADU is generally produced from uranyl nitrate solution (UNS) for natural uranium metal production and from uranyl fluoride solution (UFS) for low enriched uranium metal production. In present paper, ADU has been produced via both the routes. Variation of uranium recovery and crystal structure and composition of ADU with progress in precipitation reaction has been studied with special attention on first appearance of the precipitate Further, ADU produced by two routes have been calcined to $UO_3$, then reduced to $UO_2$ and hydroflorinated to $UF_4$. Effect of two different process routes of ADU precipitation on the characteristics of ADU, $UO_3$, $UO_2$ and $UF_4$ were studied here.

AN ENGINEERING SCALE STUDY ON RADIATION GRAFTING OF POLYMERIC ADSORBENTS FOR RECOVERY OF HEAVY METAL IONS FROM SEAWATER

  • Prasad, T.L.;Saxena, A.K.;Tewari, P.K.;Sathiyamoorthy, D.
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1101-1108
    • /
    • 2009
  • The ocean contains around eighty elements of the periodic table and uranium is also one among them, with a uniform concentration of 3.3 ppb and a relative abundance factor of 23. With a large coastline, India has a large stake in exploiting the 4 billion tonnes of uranium locked in seawater. The development of radiation grafting techniques, which are useful in incorporating the required functional groups, has led to more efficient adsorbent preparations in various geometrical configurations. Separation based on a polymeric adsorbent is becoming an increasingly popular technique for the extraction of trace heavy metals from seawater. Radiation grafting has provided definite advantages over chemical grafting. Studies related to thermally bonded non woven porous polypropylene fiber sheet substrate characterization and parameters to incorporate specific groups such as acrylonitrile (AN) into polymer back bones have been investigated. The grafted polyacrylonitrile chains were chemically modified to convert acrylonitrile group into an amidoxime group, a chelating group responsible for heavy metal uptake from seawater/brine. The present work has been undertaken to concentrate heavy metal ions from lean solutions from constant potential sources only. A scheme was designed and developed for investigation of the recovery of heavy metal ions such as uranium and vanadium from seawater.

ATWS Performance of KALIMER Uranium Metal Core

  • Dohee Hahn;Kim, Young C.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.592-597
    • /
    • 1996
  • The KALIMER core, of which nuclear design is largely governed by inherent safety and reactivity control issues, is fueled with metallic fuel, and the initial core will be loaded with 20% enriched Uranium metal fuel. KALIMER safety design objectives include the accommodation of unprotected, ATWS events without operator action, and without the support of active shutdown, shutdown heat removal, or any automatic system without damage to the plant and without jeopardizing public safety. The transient analysis of the core designs has been focused on severe events to assess the margins in the design, and ATWS events are the most severe events that must be accommodated by the KALIMER design. The ATWS performance has been evaluated for the preliminary initial core design of KALIMER with a particular emphasis on the inherent negative reactivity feedback effects, including the Doppler, sodium density, fuel axial expansion, core radial expansion, and control rod driveline expansion. Results show that the Uranium metal core design meets the temperature limits with margin.

  • PDF