• Title/Summary/Keyword: Upwind Flux Difference Splitting

Search Result 27, Processing Time 0.021 seconds

Compressor Cascade Flow Analysis by Using Upwind Flux Difference Splitting Method (풍상차분법을 이용한 압축기 익렬유동 해석)

  • 권창오;송동주;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.653-661
    • /
    • 1994
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 supersonic/transonic compressor cascade flow. H-type grid was chosen for its simplicity in applying cyclic tridiagonal matrix algorithm along with conventional slip/no-slip boundary conditions. The thin-layer algebraic model of Baldwin-Lomax was employed for the calculation of turbulent flows. The test case inlet Mach No. was 1.612 and inlet/exit pressure ratio($P_2/P_1$) was 2.15. The results were compared with experimental results from current method were compared well in suction surface with the experiments and other computational results; however, not well in pressure surface. It might be due to the complex flowfields such as shock/boundary layer interaction, turbulence, and flow separation, etc. In the future, a proper turbulence modelling and adaptive grid system will be studied to improve the solution quality.

Numerical Analysis of Nonequilibrium Chemically Reacting Inviscid flow over Blunt-bodies Using Upwind Method (Upwind 방법을 이용한 무딘물체 주위의 화학적 비평형 비점성 유동장의 수치 해석)

  • Seo Jeong Il;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.99-105
    • /
    • 1997
  • A finite-difference method based on conservative supra characteristic method type upwind flux difference splitting has been developed to study the nonequilibrium chemically reacting inviscid flow. For nonequilibrium air, NS-1 species equations were strongly coupled with flowfield equations through convection and species production terms. Inviscid nonequilibrium chemically reacting air mixture flows over Blunt-body were solved to demonstrate the capability of the current method. At low altitude flight conditions the nonequilibrium air models predicted almost the same temperature, density and pressure behind the shock as equilibrium flow: however, at high altitudes they showed substantial differences due to nonequilibrium chemistry effect. The new nonequilibrium chemically reacting upwind flux difference splitting mettled can be extended to viscous flow and multi-dimensional flow conditions.

  • PDF

Numerical Analysis of Flowfield over Various Blunt-bodies Using Upwind Navier-Stokes Method (Upwind Navier-Stokes 방법을 이용한 다양한 무딘물체 유동장의 수치 해석적 연구)

  • Seo Jeong-Il;Song Dong-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.78-83
    • /
    • 1998
  • A finite-difference method based on conservative supra characteristic method(CSCM) type upwind flux difference splitting has been studied on the bluntness effect on the wall heat transfer rate and wall pressure over blunt-body. The results show that the stagnation heating varies inversely with the square root of the nose radius.

  • PDF

Performance Enhancement Study Using Passive Control of Shock-Boundary Layer Interaction in a Transonic/Supersonic Compressor Cascade (천음속/초음속 압축기 익렬에서 Shock-Boundary Layer 상호작용의 수동적 제어에 의한 성능 향상 연구)

  • Kim, Sang-Deok;Gwon, Chang-O;Sa, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2944-2952
    • /
    • 1996
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 transoni $c^ersonic compressor cascade flow. First, the general characteristics of baseline cascade flow were analyzed. At freestream Mach n.1.612 and exit/inlet pressure ratio 2.15, the results from current laminar flow were compared well in suction surface with the experiment; however, not well in pressure surface. Second, numerical study of the transoni $c^ersonic compressor cascade flow demonstrated the effectiveness of a passive control by the various size cavities. A cavity under the shock foot point at the suction surface of the blades was used as a passive control. The passive control of shock-boundary layer interaction by a cavity reduced total pressure losses. The effect of cavity length and depth was studied. The total pressure loss was reduced by about 10% and the isentropic efficiency was improved slightly. The effect of cavity depth in current study(d/l = 0.05, 0.02) was not found strong. Further adequate turbulence modeling and TVD schemes would help to capture the shock more accurately and increase the effectiveness of the current shock-boundary layer interaction study using upwind flux difference splitting computational methods.thods.

An Implementation of the Robust Inviscid Wall Boundary Condition in High-Speed Flow Calculations

  • Kim, Moon-Sang;Jeon, Byung-Woo;Kim, Yong-Nyun;Kwon, Hyeok-Bin;Lee, Dong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.671-680
    • /
    • 2001
  • Boundary condition is one of the major factors to influence the numerical stability and solution accuracy in numerical analysis. One of the most important physical boundary conditions in the flowfield analysis is the wall boundary condition imposed on the body surface. To solve a two-dimensional Euler equation, totally four numerical wall boundary conditions should be prescribed. Two of them are supplied by the flow tangency condition. The other two conditions, therefore, should be prepared additionally in a suitable way. In this paper, four different sets of wall boundary conditions are proposed and then applied to solve high-speed flowfields around a quarter circle geometry. A two-dimensional compressible Euler solver is prepared based on the finite volume method. This solver hires three different upwind schemes; Steger-Warmings flux vector splitting, Roes flux difference splitting, and Lious advection upstream splitting method. It is found that the way to specify the additional numerical wall boundary conditions strongly affects the overall stability and accuracy of the upwind schemes in high-speed flow calculation. The optimal wall boundary conditions should be also chosen very carefully depending on the numerical schemes used to solve the problem.

  • PDF

A COMPUTATIONAL ANALYSIS OF FINITE RATE CHEMICALLY REACTING FLOW BY USING UPWIND N-S METHOD

  • Seo J. I.;Kwon C. O.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.166-171
    • /
    • 2000
  • A two-dimensional/axisymmetric CSCM upwind flux difference splitting Wavier-Stokes method has been developed to study the finite rate chemically react-ing invisicd and viscous hypersonic flows over blunt-body. A upwind method was chosen due to its robustness in capturing the strong bow shock waves. For the nonequilibrium chemically reacting air, NS-I species conservation equations were strongly coupled with flowfield equations through convection and species production terms. The nonequilibrium wall pressure and heat transfer rate distributions along the vehicle were compared with those from equilibrium and perfect gas calculations. The nonequilibrium species distribution shows the reduced concentrations of O and N species when compared with equilibrium species distribution. The solutions resolved strong bow shock waves md heat transfer rate very accurately when compared with central difference schemes.

  • PDF

A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method (Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석)

  • Kwon C. O.;Kim S. D.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.123-141
    • /
    • 1996
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone(5°) geometry. The effective gamma(γ), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about 3 ∼ 5 percent. The heat transfer coefficient were also calculated. The results were compared with VSL results in order to validate the current numerical analysis. The results from current method were compared well VSL results ; however, not well at near nose. The proper boundary condition and grid system will be studied to improve the solution quality.

  • PDF

A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method (Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석)

  • Gwon Chang-O;Kim Sang-Deok;Song Dong-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.203-212
    • /
    • 1995
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone($5^{\circ}$) geometry. The effective gamma($\bar{r}$), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30Km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about $3\sim5$ percent. The skin friction coefficient and heat transfer coefficient were also calculated.

  • PDF

A Numerical Study on Efficiency and Convergence for Various Implicit Approximate Factorization Algorithms in Compressible Flow Field. (다양한 근사인수분해 알고리즘을 이용하여 압축성 유동장의 수렴성 및 유용성에 대한 연구)

  • Gwon Chang-O;Song Dong-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.17-22
    • /
    • 1999
  • Convergence characteristics and efficiency of three implicit approximate factorization schemes(ADI, DDADI and MAF) are examined using 2-Dimensional compressible upwind Navier-Stokes code. Second-order CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method with Fromm scheme is used for the right-hand side residual evaluation, while generally first-order upwind differencing is used for the implicit operator on the left-hand side. Convergence studies are performed using an example of the flow past a NACA0012 airfoil at steady transonic flow condition, i. e. Mach number 0.8 at $1.25^{\circ}$ angle of attack. The results were compared with other computational results in order to validate the current numerical analysis. The results from the implicit AF algorithms were compared well in low surface with the other computational results; however, not well in upper surface. It might be due to lack of the grid around the shock position. Because the algorithm minimizes the errors of the approximate decomposition, the improved convergence rate with MAF were observed.

  • PDF

Unsteady Transonic Flow Analysis over an Oscillatory Airfoil using upwind Navier-Stokes Method (Upwind Navier-Stokes 방법을 이용한 진동하는 익형 주위의 비정상 천음속 유동해석)

  • O Tae Hun;Kim Sang Deok;Song Dong Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.137-143
    • /
    • 1999
  • The unsteady transonic viscous flow has been analyzed over an oscillatory airfoil. The CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method and the iterative time marching scheme having first order accuracy in time and second to third order accuracy in space was applied on dynamic meshes. A steady flow field of Mach number 0.7 has been calculated for the verification of unsteady algorithm. The time-accurate unsteady calculations have been done for NACA 0012 airfoil oscillating around quarter chord about freestream Mach number 0.6 on dynamic meshes. The results have been compared with the AGARD Case 3 experimental data. The periodic characteristics have been compared with the experimental results.

  • PDF