• Title/Summary/Keyword: Uptake amounts

Search Result 169, Processing Time 0.022 seconds

Evaluation of the Effect of Urban-agriculture on Urban Heat Island Mitigation (도시농업의 도시열섬현상 저감효과에 대한 계량화 평가연구)

  • Eom, Ki-Cheol;Jung, Pil-Kyun;Park, So-Hyun;Yoo, Sung-Yung;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.848-852
    • /
    • 2012
  • Vegetation can make not only to lower the urban ambient air temperature (UAAT) by crop evapotranspiration (ET) and increasing solar radiation albedo, but also to reduce the urban air pollution by $CO_2$ uptake and $O_2$ emission in addition to the reducing ozone concentrations by aid of lower the UAAT. To evaluate the effect of vegetation on urban heat island mitigation (UHIM), the climate change of 6 cities during 30 years are analysed, and the amount of ET, $CO_2$ uptake, $O_2$ emission and ozone concentrations are estimated in Korea. The most hot season is the last part of July and the first part of August, and the highest average UAAT of a period of ten days was $35.03^{\circ}C$ during 30 years (1979 - 2008). The mean values of maximum ET of rice and soybean in urban area during urban heat island phenomena were 6.86 and $6.00mm\;day^{-1}$, respectively. The effect of rice and soybean cultivation on lowering the UAAT was assessed to be 10.5 and $3.0^{\circ}C$ in Suwon, respectively, whereas the differences between the UAAT and canopy temperature at urban paddy and upland in Ansung were 2.6 and $2.2^{\circ}C$. On the other hand, the urban-garden in Suwon city had resulted in lowering the UAAT and the surface temperature of buildings to 2.0 and $14.5^{\circ}C$, respectively. Furthermore, the amounts of $CO_2$ uptake by rice and soybean were estimated to be 20.27 and $15.54kg\;CO_2\;10a^{-1}day^{-1}$, respectively. The amounts of $O_2$ emission by rice and soybean were also assessed to be 14.74 and $11.30kg\;O_2\;10a^{-1}day^{-1}$, respectively. As other cleaning effect of air pollution, the ozone concentrations could be also estimated to reduce 21.0, 8.8, and 4.0 ppb through rice-, soybean cultivation, and urban gardening during most highest temperature period in summer, respectively.

Effect of Different Levels of Applications of Illite on the Growth of Red Pepper in Soil (토양에 점토광물 일라이트 처리시 고추의 생장에 미치는 영향)

  • Lee, Seok-Eon;Kim, Deok-Hyun;Hong, Hyeon-Ki;Kwon, Sang-Moon;Lee, Moon-Soon;Woo, Sun-Hee;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.339-343
    • /
    • 2012
  • This study was performed to examine the effect of the clay mineral illite on the improvement of soil and plant growth. Red pepper (Capsicum annuum L.) was used as a test vegetable crop. The experiment was performed during six weeks in the plantation of the Chungbuk National University. Its seedlings were cultivated in the soil normally used for horticultural purpose. Among the seedlings germinated the healthy and regular size of seed were selected and cultivated in the plantation. They were treated with two forms of illite, particulate (PA) and powder (PW), at the following application rates: standard application[P1 (PA1, PW1), soil: illite = 1:20 (w/w)] and two times [P2 (PA2, PW2), 1:10 (w/w)] of standard application. Untreatment (P0) was used as a control soil. At six weeks of cultivation, their growth lengths were correspondingly increased as the application rate was increased ranging from P0, P1, and P2. Their growth length was a little greater with the application of powder illite (PW) than with the particulate illite (PA). Based on the plant analysis of root, leaf, and stem of red pepper, the uptake amounts of K, Ca, and Mg, were correspondingly increased, as the application rate was increased ranging from P0, P1, and P2 respectively. At the same application rate, their amounts taken up in the respective parts were higher with the application of PW illite than on the PA one. Especially the amounts of Ca and Mg were higher in the stem and leaf than root. Consequently, it appears that the illite treatment, especially, PW form of illite, enhance the growth of red pepper in the plantation during the six weeks of experiment.

Effect of Different Levels of Applications of Illite on the Growth of Red Pepper (Capsicum annuum L.) in Bed Soil (상토에서 일라이트의 혼합비율에 따른 고추 육묘시 생육효과)

  • Lee, Seok-Eon;Kim, Hong-Ki;Kwon, Sang-Moon;Kim, Hee-Jung;Yoo, Ri-Bi;Baek, Ki-Tae;Lee, Moon-Soon;Woo, Sun-Hee;Park, Man;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.852-857
    • /
    • 2010
  • This study was performed to explore the effect of the clay mineral illite on the improvement of bed soil and plant growth. Red pepper (Capsicum annuum L.) was used as a model vegetable crop. The experiment was performed during the whole six weeks in the glass house of the Chungbuk National University. Its seedlings were cultivated in the bed soil normally used for horticultural purpose. Of the seedlings cultured, the healthy and regular size of seed were selected and cultivated in the pots. They were treated with two forms of illite, particulate (PA) and powder (PW), at the following application rates: standard application[P1 (PA1, PW1), 1:20 (w/w)], two times[P2 (PA2, PW2), 1:10 (w/w)], and four times[P4 (PA4, PW4), 1:5 (w/w)] of standard application. Untreatment (P0) was used as a control pot. At six weeks of cultivation, their growth lengths were correspondingly increased as the application rate was increased ranging from P0, P1, P2, and to P4. Their growth length was a little greater on the application of powder illite (PW) than on the particulate illite (PA). Based on the plant analysis for the root, leaf, stem of red pepper, the uptake amounts of K, Ca, and Mg, were correspondingly increased, as the application rate was increased ranging from P0, P1, P2, and to P4, respectively. At the same application rate, their amounts taken up in the respective parts were higher on the application of PW illite than on the PA one. Especially the amounts of Ca and Mg were higher in the stem, leaf than root. Consequently, it appears that the illite treatment, especially, PW form of illite, enhance the growth of red pepper in the glass house during the whole six weeks of experiment.

Evaluation of the Parameters of Soil Potassium Supplying Power for Predicting Yield Response, K2O Uptake and Optiumum K2O Application Levels in Paddy Soils (수도(水稻)의 가리시비반응(加里施肥反応)과 시비량추정(施肥量推定)을 위한 가리공급력(加里供給力) 측정방법(測定方法) 평가(評価) -I. Q/I 관계(関係)에 의(依)한 가리(加里) 공급력측정(供給力測定)과 시비반응(施肥反応))

  • Park, Yang-Ho;An, Soo-Bong;Park, Chon-Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.42-49
    • /
    • 1983
  • In order to find out the possibility of predicting fertilizer K requirement from the K supplying capacity of soil, the relative K activity ratio, Kas/kai, the potential buffering capacity of $K^+$ ($PBC^k$ ; the liner regression coefficient) and its activity ratio ($AR^k_o$ ; $^{k+}$/${\sqrt{Ca^{+2}+Mg^{+2}}}$ in mol/l) at ${\delta}K$ = O, in the Q/I relationships of Beckett(1964), were determined for the soils before flooding and the samples taken at heading stage of transplanted rice in pot experiment. These parameters assumed as the K supplying capacity of soils were subjected for the investigation through correlation stady between themselves and other factors such as grain yield or the amounts of $K_2O$ uptake by rice plant at harvest. The results may be summarized as follows; 1. The potassium supplying power of the flooded soil was considered to be ruled by the amounts of exchangeable K before flooding, since there was little change in exchangeable K concentration from no-exchangeable K during the incubation periods of 67 days. 2. The $PBC^k$ values, in soils before flooding were 0.027, 0.014 and 0.009, where as the $AR^k_o{\times}10^{-3}$ values were 9.1, 7.6, and 15.4, respectively, in clay, loamy and sandy loam soils. 3. The $PBC^k$ values, determined in the soil samples taken at heading stage, varied little compared with the values of orignal soil, regardless of those different fertilizer treatments and textures, showing the possibility of using them as a factor for the improvement of soil to increase the efficiency of fertilizer K. 4. The significant yield responses to potassium fertilizer application were observed wherever the $AR^k_o$ values in soil at heading stage drop down to the original $AR^k_o$ values, regardless of any levels of fertilizer application. 5. The higher correlations between the gain yield or the amounts of $K_2O$ uptake and by the use of both soil factors of $PBC^k$ and $AR^k_o$ at heading stage were observed compared with the use of any single factor. 6. The Kas/Kai value in the soil, estimated prior to the experiment, had high possitive correlation with the $AR^k_o$ determined in the soil at heading stage and could be used as a soil factor for predicting potassium fertilizer requirement.

  • PDF

Influence of Percolation Rate on Nutrient Uptake and Yield of Paddy Rice (투수속도(透水速度)가 수도(水稻)의 양분흡수(養分吸收) 및 수량(收量)에 미치는 영향(影響))

  • Shin, Weon-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.218-223
    • /
    • 1984
  • In order to analyze the effects of percolation rate on the growth and yield of rice plants in paddy soils, pot (1a/2000) experiments were carried out. The soil used was highly concentrated with various salts in the horticulture area under vinyl house cultivation, and Samgang variety of Japanica rice was planted. With the increasing rates of percolation, $SiO_2$ and $Ca^{2+}$ were more leached out from soils than supplied by irrigation while $K^+$ and $NH_4{^+}$ were more supplied to soils than leached out. The root activity in the late growth stage was higher in the percolation pots than in the non-percolation pots. Amounts of nutrient uptake of T-N, $P_2O_5$, $K_2O$ and MgO were increased gradually with the increase of percolation rate, but that of $SiO_2$ was maximum at 10mm per day. The percolation rate of 5~10mm per day was considered to be the optimum condition for obtaining more than 95% of relative yield in rice cultivation.

  • PDF

Effects of Inoculation with Phosphate-Solubilizing Microorganisms on Availability and Plant Uptake of Phosphorus in Red-yellow and Calcareous Soils of Korea (한국(韓國)의 적황색(赤黃色) 및 석회질토양(石灰質土壤)에서 인산(燐酸)의 유효화(有效化) 및 작물(作物)의 인산흡수(燐酸吸收)에 대한 인산염(燐酸鹽) 가용화균(可溶化菌) 접종(接種) 효과(效果))

  • Suh, Jang-Sun;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • Effects of inoculation with phosphate-solubilizing microorganisms, Pseudomonas putida and Aspergillus niger, were studied in both acidic red-yellow and alkaline calcareous soils cropped with pimiento. In red-yellow soil after cultivation, the amounts of soil available phosphorus on non-fertilizer and fertilizer plots inoculated with Aspergillus niger, and on rice straw plot inoculated with Pseudomonas putida and Aspergillus niger were significantly higher than uninoculation treatments, but there were no differences in calcareous soil. With inoculation of either Pseudomonas putida or Aspergillus niger, increase in phosphorous uptake by pimiento cultivated in calcareous soil was detected on non-fertilizer, and fertilizer plots except rice straw plot. Although there were no significant differences in soil cellulase activities among treatments, the activity was the highest on rice straw plot in red-yellow soil. The phosphatase activities in red-yellow soil were increased by the inoculation with Aspergillus niger only, and the activity in calcareous soil was improved by the inoculation with either Pseudomonas putida or Aspergillus niger.

  • PDF

Assesment on the Inoculation Effects of Phosphate-solubilizing Microorganisms by Soil Microbial Biomass (토양미생물(土壤微生物) Biomass에 의한 인산염(燐酸鹽) 가용화균(可溶化菌) 접종효과(接種效果)의 평가(評價))

  • Suh, Jang-Sun;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.181-189
    • /
    • 1996
  • Several phosphate-solubilizing microorganisms were isolated in order to enhance the availability of insoluble phosphates accumulated in soils. Among the microorganisms, Aspergillus niger was selected and identified for this study. The phosphate-solubilizing activity. the phosphorus uptake by plants and the changes in soil microbial biomass by inoculation of Aspergillus niger were investigated. The uptake amounts of phosphorus by lettuce and pimiento were increased by inoculation of Aspergillus niger in all experimental treatments. There was negative correlation between the soil microbial biomass P and the soil phosphorus content. However the soil available phosphorus ($Y=-0.0007X^2+0.7126X^2-29.46$, $R=0.8283^{**}$) and the phosphorus absorption of plants ($Y=0.0049X^2-2.2352X+326.34$, $R=0.6350^*$) were significantly correlated to soil microbial biomass C on the positive section of quadric curve.

  • PDF

Establishment of the Optimum Nitrogen Application Rates for Oriental Melon at Various Growth Stages with a Fertigation System in a Plastic Film House (시설 참외 관비재배시 생육단계별 질소시비기준 설정)

  • Jung, Kyu-Seok;Jung, Kang-Ho;Park, Woo-Kyun;Song, Yo-Sung;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.349-355
    • /
    • 2010
  • This experiment was conducted to establish the optimum nitrogen application level for oriental melon at Seong-ju Fruit Vegetable Experiment Station with a fertigation system. Four different levels of nitrogen fertigation were applied to oriental melon and growth of the plant was analyzed. Plant samples were collected 8 times and were analyzed by the standard methods. The first fertigation was applied at 10 days after transplanting for the oriental melon based on the growth rates of the plants. For oriental melon, 10 day interval fertigation and 8 time split application of fertilizer could be recommended. The amounts of N, P, and K fertilizer recommended by soil testing was 249-408-315 (kg $ha^{-1}$). Treatment levels were 0, 0.5, 1.0, and 1.5 times of soil testing nitrogen with P and K level fixed. The total nitrogen (T-N) content in dried leaf showed a tendency to increase until 30 days after transplanting, then decreased. T-N content increased with increasing nitrogen fertigation rates. T-N content in dried fruit decreased slightly during the whole growing season. Fresh weight and nitrogen uptake were increased with increasing nitrogen fertigation rates. Total yield and marketable yield, 44,550 kg $ha^{-1}$ and 42,880 kg $ha^{-1}$, were maximized at 0.5 times of soil test nitrogen. Ratio of marketable fruit, 95%, was the highest at 0.5 times of soil test nitrogen. The optimum level of nitrogen for fertigation system was 0.5 times soil test nitrogen judging from total yield, commodity yield and commodity fruit.

Effect of Leaf mold on Cd Uptake in paddy Soil by Rice Plant (답토양(沓土壤)에서 부엽토(腐葉土)가 수도(水稻)의 Cd흡수(吸收)에 미치는 영향(影響))

  • Kim, Seong-Jo;Baek, Seung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.99-104
    • /
    • 1985
  • To evaluate the effect of organic matter on phytotoxicity and uptake of Cd by rice plant, paddy rice was cultivated by pot test under the flooded condition by treating a sing concentration of 25ppm Cd and different amounts of leaf mold. The phytotoxicity of rice plant by Cd and the content of Cd in the vegetative rice plant reduced by increasing the content of organic matter. The content of Cd in the vegetative parts of rice plant decreased in the order of sheath, stem, leaf blade, and brown rice. The content of Cd in brown rice was 0.59 ppm below 1 ppm, a criterion level of contaminated rice, when paddy rice was cultivated under the condition flooded condition through the whole period of cultivation. And that of Cd in brown rice could be controlled until 0.14ppm such as the similar level producing at non-contaminated paddy soil when applied 200g of lead mold/8kg of dried soil and 25ppm of Cd to the flooded paddy soil.

  • PDF

Effects of an aqueous red pine (Pinus densiflora) needle extract on growth and physiological characteristics of soybean (Glycine max)

  • Hwang, Jeong-Sook;Bae, Jeong-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.279-286
    • /
    • 2011
  • The effect of allelochemicals on growth, root nodule nitrogen fixation activity, and ion patterns of soybeans were investigated. We prepared 50 g/L (T50), 100 g/L (T100), and 200 g/L (T200) extract concentrations by soaking fresh red pine needles in a nutrient solution. Adding needles to the nutrient solution increased the content of total phenolic acids, osmolality, and total ions. The total phenolic content in the T50, T100, and T200 extracts were $206{\pm}12.61$, $335{\pm}24.16$, and $603{\pm}12.30$ mg gallic acid equivalents, respectively. The $K^+$, $Mg^{2+}$, $Ca^{2+}$, and $PO_4^{3-}$ content increased by adding needles to the nutrient solutions, whereas $SO_4^{2-}$ content decreased. The growth inhibition of soybeans was proportional to the needle extract concentrations, and the T100 and T200 concentrations resulted in remarkable growth inhibition. On day 20 after treatment, dry weight and nitrogen fixation activity of the root nodules were reduced by the T100 and T200 treatments, whereas the T50 treatment was not difference from the control. After day 10, total ion content in all treatment groups was not different in comparison with the control. However, total ionic content in all treatment groups decreased significantly compared with that in the control after day 20. The lowest total ion value was found for the T200 concentration. The T200 treatment also resulted in significantly reduced $SO_4^{2-}$ content. The amounts of $Mg^{2+}$, $Ca^{2+}$, and $Mn^{2+}$ were higher than those of the control for the T50 treatment on day 10 and for T100 on day 20 after treatment. A significant increase in osmolality was observed in the T200 treatment on day 10 and in the T100 treatment on day 20. These results suggest that under severe allelochemical stress conditions, a remarkable reduction in nodule formation, nitrogen fixation activity, and ion uptake eventually resulted in a decrease in leaf production. Furthermore, increased $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Mn^{2+}$, and osmolality in soybeans exposed to lower concentrations of allelochemicals than the critical stress level helped overcome the stress.