• Title/Summary/Keyword: Upper solution

Search Result 633, Processing Time 0.033 seconds

DIFFERENTIAL EQUATIONS ON WARPED PRODUCTS (II)

  • JUNG, YOON-TAE
    • Honam Mathematical Journal
    • /
    • v.28 no.3
    • /
    • pp.399-407
    • /
    • 2006
  • In this paper, we consider the problem of achieving a prescribed scalar curvature on warped product manifolds according to fiber manifolds with zero scalar curvature.

  • PDF

Analysis on Upper and Lower Bounds of Stochastic LP Problems (확률적 선형계획문제의 상한과 하한한계 분석)

  • 이상진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.3
    • /
    • pp.145-156
    • /
    • 2002
  • Business managers are often required to use LP problems to deal with uncertainty inherent in decision making due to rapid changes in today's business environments. Uncertain parameters can be easily formulated in the two-stage stochastic LP problems. However, since solution methods are complex and time-consuming, a common approach has been to use modified formulations to provide upper and lower bounds on the two-stage stochastic LP problem. One approach is to use an expected value problem, which provides upper and lower bounds. Another approach is to use “walt-and-see” problem to provide upper and lower bounds. The objective of this paper is to propose a modified approach of “wait-and-see” problem to provide an upper bound and to compare the relative error of optimal value with various upper and lower bounds. A computing experiment is implemented to show the relative error of optimal value with various upper and lower bounds and computing times.

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THERMAL STRATIFICATION IN THE UPPER PLENUM OF THE MONJU FAST BREEDER REACTOR (몬주 고속증식로 상부플레넘에서의 열성층에 관한 전산유체역학 해석)

  • Choi, S.K.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.41-48
    • /
    • 2012
  • A numerical analysis of thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (~300 seconds). However, transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A nearly homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates. This discrepancy is due to the shortcoming of the turbulence models available in the CFX-13 code for a natural convection flow with thermal stratification.

Tourniquet-Free Hand Surgery Using the One-per-Mil Tumescent Technique

  • Prasetyono, Theddeus O.H.
    • Archives of Plastic Surgery
    • /
    • v.40 no.2
    • /
    • pp.129-133
    • /
    • 2013
  • Background A pneumatic tourniquet is generally used to achieve a bloodless operation field in hand surgery. However, this has changed with tumescent solution-based wide-awake surgery. This study is a preliminary prospective case series study to elaborate the formula and indications of the tumescent technique in hand surgery without a tourniquet. Methods Seven patients (age range, 4 months to 37 years) underwent hand or upper extremity surgery for conditions such as nerve palsy, electric burn defect, fingertip injury, contracture, constriction ring syndrome, or acrosyndactyly. A "one-per-mil" tumescent solution (epinephrine 1:1,000,000+20 mg lidocaine/50 mL saline) was used to create a bloodless operating field without a tourniquet. Observation was performed to document the amount of solution injected, the operation field clarity, and the postoperative pain. Results The "one per mil" epinephrine solution showed an effective hemostatic effect. The tumescent technique resulted in an almost bloodless operation field in the tendon and in the constriction ring syndrome surgeries, minimal bleeding in the flap and contracture release surgeries, and acceptable bleeding in acrosyndactyly surgery. The amount of solution injected ranged from 5.3 to 60 mL. No patient expressed significant postoperative pain. Flap surgeries showed mixed results. One flap was lost, while the others survived. Conclusions Epinephrine 1:1,000,000 in saline solution is a potential replacement for a tourniquet in hand surgery. Further studies are needed to delineate its safety for flap survival.

Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion

  • Yang, X.L.;Qin, C.B.
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.503-515
    • /
    • 2014
  • On the basis of Hoek-Brown failure criterion, a numerical solution for the shape of collapsing block in the rectangular cavity subjected to seepage forces is obtained by upper bound theorem of limit analysis. The seepage forces obtained from the gradient of excess pore pressure distribution are taken as external loadings in the limit analysis, and the pore pressure is easily calculated with pore pressure coefficient. Thus the seepage force is incorporated into the upper bound analysis as a work rate of external force. The upper solution of the shape of collapsing block is derived by virtue of variational calculation. In order to verify the validity of the method proposed in the paper, the result when the pore pressure coefficient equals zero, and only hydrostatic pressure is taken into consideration, is compared with that of previous work. The results show good effectiveness in calculating the collapsing block shape subjected to seepage forces. The influence of parameters on the failure mechanisms is investigated.

Determination of tunnel support pressure under the pile tip using upper and lower bounds with a superimposed approach

  • Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.587-605
    • /
    • 2016
  • This study aimed to develop upper and lower bounds to predict the tunnel support pressure under the pile tip during the circular tunnel excavation. Most previous studies on the upper and lower bound methods were carried out for the single ground structures, e.g., retaining wall, foundation, ground anchor and tunnel, in the homogeneous ground conditions, since the pile-soil-tunnel interaction problem is very complicated and sophisticated to solve using those bound methods. Therefore, in the lower bound approach two appropriate stress fields were proposed for single pile and tunnel respectively, and then they were superimposed. In addition, based on the superimposition several failure mechanisms were proposed for the upper bound solution. Finally, these upper bound mechanisms were examined by shear strain data from the laboratory model test and numerical analysis using finite element method.

Effect of Seepage Forces on the Tunnel Face Stability - Assessing through Model Tests - (침투력이 터널 막장의 안정성에 미치는 영향 연구 - 모형실험을 중심으로 -)

  • 이인모;안재훈;남석우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.41-48
    • /
    • 2001
  • In this study, two factors are simultaneously considered for assessing tunnel face stability: one is the effective stress acting on the tunnel face calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. From the results of derivations of the upper bound solution with the consideration of seepage forces acting on the tunnel face, it could be found that the minimum support pressure for the face stability is equal to the sum of effective support pressure and seepage pressure acting on the tunnel face. Also it could be found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the water-proof type tunnel. The model tests performed with a tunnel model had a similar trend with the seepage pressure calculated by numerical analysis. From the model tests it could be also found that the collapse at the tunnel face occurs suddenly and leads to unlimited displacement.

  • PDF

Optimization of LU-SGS Code for the Acceleration on the Modern Microprocessors

  • Jang, Keun-Jin;Kim, Jong-Kwan;Cho, Deok-Rae;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.112-121
    • /
    • 2013
  • An approach for composing a performance optimized computational code is suggested for the latest microprocessors. The concept of the code optimization, termed localization, is maximizing the utilization of the second level cache that is common to all the latest computer systems, and minimizing the access to system main memory. In this study, the localized optimization of the LU-SGS (Lower-Upper Symmetric Gauss-Seidel) code for the solution of fluid dynamic equations was carried out in three different levels and tested for several different microprocessor architectures widely used these days. The test results of localized optimization showed a remarkable performance gain of more than two times faster solution than the baseline algorithm for producing exactly the same solution on the same computer system.

An Algorithm on Three-Dimensional Loading Problem (3차원 적재문제의 최적 해법)

  • 김상열;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.1-13
    • /
    • 1998
  • The purpose of this paper is to formulate the three-dimensional loading problem and to develop an exact algorithm. The three-dimensional loading problem is not only to load as many boxes as possible, but also to ensure load stability. In this Paper, we propose formulation by zero-one integer programming. Further we propose as an algorithm the branch-and-bound enforced by efficient bounding criteria. As an upper bound, we use the solution of the Lagrangean relaxation problem which relaxes constraints of zero-one IP, and as a lower bound, we use a heuristic solution induced by the solution of the Lagrangean relaxation problem. Last, we show computational experiments on convergency of upper and lower bounds.

  • PDF

THE ITERATION METHOD OF SOLVING A TYPE OF THREE-POINT BOUNDARY VALUE PROBLEM

  • Liu, Xiping;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.475-487
    • /
    • 2009
  • This paper studies the iteration method of solving a type of second-order three-point boundary value problem with non-linear term f, which depends on the first order derivative. By using the upper and lower method, we obtain the sufficient conditions of the existence and uniqueness of solutions. Furthermore, the monotone iterative sequences generated by the method contribute to the minimum solution and the maximum solution. And the error estimate formula is also given under the condition of unique solution. We apply the solving process to a special boundary value problem, and the result is interesting.

  • PDF