• Title/Summary/Keyword: Upper plenum

Search Result 33, Processing Time 0.014 seconds

MARS/MASTER Solution to OECD Main Steam Line Break Benchmark Exercise III

  • Jeong, Jae-Jun;Joo, Han-Gyu;Chung, Bub-Dong;Ha, Kwi-Seok;Lee, Won-Jae;Cho, Byung-Oh;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.214-226
    • /
    • 2000
  • In an effort to assess the performance of KAERI's coupled 3D kinetics - system T/H code, MARS/MASTER, Exercise III of the OECD main steam line break benchmark is solved. The analysis model of the reference plant, TMI-1 - a 2772 MWth B&W plant, consists of three major components: a core neutronics model involving 241$\times$28 neutronic nodes, a vessel 3D T/H model consisting of 374 hydrodynamic volumes, and a 1D system T/H model containing 157 hydrodynamic volumes. The results show that there is a significant amount of flow mixing occurring in the upper and lower plenum regions and the core power distribution evolves to a highly localized shape due to the presence of a stuck rod, as well as the asymmetric flow distribution. It is judged that MARS/MASTER properly captures these drastic 3-dimensional effects. Comparisons with other results submitted to OECD confirm the accuracy of the MARS/MASTER solution.

  • PDF

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.

A Study on the Vent Path Through the Pressurizer Manway and Steam Generator Manway under Loss of Residual Heat Removal System During Mid-loop Operation in PWR (가압경수로의 부분충수 운전중 잔열제거계통 기능 상실사고시 가압기와 증기발생기 Manway 유출유로를 이용한 사고완화에 관한 연구)

  • Y. J. Chung;Kim, W. S.;K. S. Ha;W. P. Chang;K. J. Yoo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.137-149
    • /
    • 1996
  • The present study is to analyze an integral test, BETHSY test 6.9c, which represent loss of RURS accident under mid-loop operation. Both the pressurizer manway and the steam generator outlet plenum manway are opened as vent paths in order to prevent the system from pressurization by removing the steam generated in the core. The main purposes are to gain insights into the physical phenomena and identify sensitive parameters. Assessment of capability of CATHARE2 prediction can be established the effective recovery procedures using the code in an actual plant. Most of important physical phenomena in the experiment could be predicted by the CATHARE2 code. The peak pressure in the upper plenum is predicted higher than experimental value by 7 kPa since the differential pressure between the pressurizer and the surge line is overestimated. The timing of core uncovery is delayed by 500 seconds mainly due to discrepancy in the core void distribution. It is demonstrated that openings of the pressurizer manwey and the steam generator manway can prevent the core uncovery using only gravity feed injection. Although some disagreements are found in the detailed phenomena, the code prediction is considered reasonable for the overall system behaviors.

  • PDF