• Title/Summary/Keyword: Upper infrastructure

Search Result 115, Processing Time 0.027 seconds

Real-scale field testing for the applicability examination of an improved modular underground arch culvert with vertical walls

  • Tae-Yun Kwon;Jin-Hee Ahn;Hong-duk Moon;Kwang-Il Cho;Jungwon Huh
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.377-389
    • /
    • 2023
  • In this study, an improved modular arch system with the lower arch space composed of a precast arch block and an outrigger was proposed as an underground culvert, and its applicability and structural behaviors were confirmed. This modular arch culvert structure with vertical walls was designed using precast blocks and by adjusting the placement spacing of concrete blocks to the upper part form an arch shape and the lower part form a vertical wall shape, based on previously researched modular arch systems. Owing to the vertical wall of the proposed modular arch system, it is possible to secure a load-carrying capacity and an arch space that can sufficiently resist the earth pressure generated from the backfill soil and loading on the arch system. To verify the structural characteristics, and applicability of the proposed modular precast arch culvert structure, a full-scale modular culvert specimen was fabricated, and a loading test was conducted. By examining its construction process and loading test results, the applicability and constructability of the proposed structure were analyzed along with its structural characteristics. In addition, its the structural predictability and safety for the applicability were evaluated by comparing the construction process and loading test results with the FE analysis results.

Development of a sea environmental monitoring system using wire and wireless communication ($\cdot$무선통신을 이용한 해양환경 모니터링 시스템의 개발)

  • 김진호;한정만;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.160-165
    • /
    • 1996
  • This paper introduces a sea environmental monitoring system for measuring pH,DO, level and temperature. This system is developed using a personal computer(PC) and multiple single board computers. A PC communicates with the single board computers by awireless communication method and transfers data to another personal computer for processing data by a modem. The values of pH,Do,level and temperature, which are basic components to estimate sea environment, are real-timely processed in the single board computer at each stations, and transferred to the monitoring PC. These data are graphically shown on the PC monitor and logged on the data processing system in the form of file. Using the wire and wireless communication system, user can constantly analyze the acquired data and detect the sea contamination.

  • PDF

Study on Young's Modulus of Geomaterials used in Korean Railway Infrastructures

  • Lee, Sung Jin;Lee, Seong Hyeok;Lee, Il Wha;Hwang, Su Beom;Kim, Ki Jae
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • In this study, cyclic triaxial tests were carried out with the coarse granular materials used in Korean railway infrastructure (reinforced trackbed, gravel of transition zone, upper subgrade of railway) and Young's modulus for the target materials in small strain level were suggested. And the result of elastic modulus suggested in this study is expected to be effectively applied to dynamic analysis of the railway embankment structure using similar material, since the grain size distributions and unit weight of the material tested in this study are specified in Korean Railway Design Criteria.

Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis

  • Khezri, Nima;Mohamad, Hisham;Fatahi, Behzad
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.471-492
    • /
    • 2016
  • Underground tunnelling is one of the sustainable construction methods which can facilitate the increasing passenger transportation in the urban areas and benefit the community in the long term. Tunnelling in various ground conditions requires careful consideration of the stability factor. This paper investigates three dimensional stability of a shallow circular tunnel in a layered soil. Upper bound theorem of limit analysis was utilised to solve the tunnel face stability problem. A three dimensional kinematic admissible failure mechanism was improved to model a layered soil and limiting assumptions of the previous studies were resolved. The study includes calculation of the minimum support pressure acting on the face of the excavation in closed-face excavations. The effects of the characteristics of the layers on the minimum support pressure were examined. It was found that the ratio of the thickness of cover layers particularly when a weak layer is overlying a stronger layer, has the most significant influence on the minimum tunnel support pressure. Comparisons have been made with the results of the numerical modelling using FLAC3D software. Results of the current study were in a remarkable agreement with those of numerical modelling.

Evaluation of Discharge Capacity of Upper Sand Deposit at the Nakdong River Estuary (낙동강 하구 상부퇴적사질토의 통수능 평가)

  • Jeong, Jin-Yeong;Kim, Tae-Hyung;Im, Eun-Sang;Hwang, Woong-Ki;Kim, Gyu-Jong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.109-119
    • /
    • 2017
  • In this research, it was investigated that whether the upper sand deposited in Nakdong River Estuary Delta region has the role of horizontal drains like sand mat. The results from tests for particle size distribution and permeability of the upper sand deposit did not meet completely the criteria for the horizontal drain material. Thus, numerical analysis has been conducted additionally. Numerical analyses of consolidation of soft soils with upper layer of sand deposit are conducted in both the sand mat with a thickness of 1m and the upper sand deposit with 1, 2, 3, and 4 m of thickness and their results are compared. As the results of numerical analysis, the upper sand deposit with a thickness of 2m or more may play the role of horizontal drains similar to a sand mat. If a PVD is installed, the ability of upper sand deposit as horizontal drains is increased. Form this study, it was concluded that the upper sand deposited in Nakdong River Estuary Delta has the role of horizontal drain.

Influence of different fatigue loads and coating thicknesses on service performance of RC beam specimens with epoxy-coated reinforcement

  • Wang, Xiao-Hui;Gao, Yang;Gao, Run-Dong;Wang, Jing;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.243-256
    • /
    • 2017
  • Epoxy-coated reinforcing bars are widely used to protect the corrosion of the reinforcing bars in the RC elements under their in-service environments and external loads. In most field surveys, it was reported that the corrosion resistance of the epoxy-coated reinforcing bars is typically better than the uncoated bars. However, from the experimental tests conducted in the labs, it was reported that, under the same loads, the RC elements with epoxy-coated reinforcing bars had wider cracks than the elements reinforced with the ordinary bars. Although this conclusion may be true considering the bond reduction of the reinforcing bar due to the epoxy coating, the maximum service loads used in the experimental research may be a main reason. To answer these two phenomena, service performance of 15 RC beam specimens with uncoated and epoxy-coated reinforcements under different fatigue loads was experimentally studied. Influences of different coating thicknesses of the reinforcing bars, the fatigue load range and load upper limit as well as fatigue load cycles on the mechanical performance of RC test specimens are discussed. It is concluded that, for the test specimens subjected to the comparatively lower load range and load upper limit, adverse effect on the service performance of test specimens with thicker epoxy-coated reinforcing bars is negligible. With the increments of the coating thickness and the in-service loading level, i.e., fatigue load range, load upper limit and fatigue cycles, the adverse factor resulting from the thicker coating becomes noticeable.

Wave Propagation on a High-speed Railway Embankment Using a Pile-slab Structure (파일슬래브구조가 적용된 고속철도 토공노반에서의 진동 전파)

  • Lee, Il Wha;Lee, Sung Jin;Lee, Su Hyung;Lee, Kang Myung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.278-285
    • /
    • 2013
  • The suppression of residual settlement is required on earthwork sections as concrete track is introduced. Use of pile-slab structure is one of the settlement restraining methods applied on soft ground. The slab distributes the upper embankment load and piles transfer the load from the slab to the stiff ground. While this method is very effective in terms of load transfer, it has not yet been established for dealing with the vibration transfer effects and interaction characteristics between a structure and the ground. It is possible that vibration caused by a moving train load is propagated in the upper embankment, because the slab acts as a reflection layer and waves are multi-reflected. In this present paper, wave propagation generated by a moving train load is evaluated in the time and frequency domains to consider a roadbed structure using an artificial impact load and field measured train load. The results confirmed the wave reflection effect on the pile-slab structure, if the embankment height is sufficient, vibration propagation can be stably restrained, whereas if the height is not sufficient, the vibration amplitude is increased.

The Comparative Experiment of Geogrid Reinforcement Types with Construction Stage on Segmental Retaining Walls (블록식 보강토 옹벽에서의 시공단계별 보강재 타입에 따른 거동비교)

  • Lee, Sung-Hyouk;Lee, Jin-Wook;Choi, Chan-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • In this study, the earth pressure, displacement and strain were compared with reinforcement types at segmental retaining wall through full scale model test. The test results found that the measurement of earth pressure and displacement at wall for the fully reinforced retaining wall are different from those for the partly reinforced retaining wall. The analyses of these results would suggest that the used of geoogrid allowed the vertical earth pressure and displacement at wall to be reduced. The horizontal earth pressure in upper and lower part of wall can change with reinforcement type and earth deformation and were larger than the active and the rest pressure. Also, the lateral earth pressure and displacement of wall have a very high a correlation. It was found that the strain contour distribution of reinforcements was occurred a large strain at cental part of wall in segmental retaining wall system.

Channels Packed with Porous Media to Improve Water Quality for Irrigation Reservoirs (관개용 저수지 수질개선을 위한 접촉산화수로)

  • Park, Byung-Heun;Jang, Jung-Ryul;Kim, Young-Kyeong;Lee, Kwang-Sik;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.122-127
    • /
    • 2000
  • A stream purification system was applied to the upper reaches of the Masan Reservoir to improve the water quality. This system consisted of two channels which were constructed on both sides of the stream, one side packed with crushed gravels and the other with plastic filter media. The system operated under low pollutant concentrations and high hydraulic loadings during a dry season to avoid clogging of the filter media. Removal rate and efficiency of chemical oxygen demand (COD) in the channel packed with crushed gravel were $14.8g/m^3/d$ and 11.5%, and for the channel with plastic filter media, $50.1g/m^3/d$ and 13.5%, respectively. Removal efficiencies of total phosphorus (T-P) were 6.6% (gravel) and 10.0% (plastic media). These results indicated plastic filter media having relatively high specific surface areas were more efficient than crushed gravels in removing pollutants. However, due to low influent water quality during dry season, the removal efficiencies were low. The proportion of nitrate nitrogen to total nitrogen (T-N) of the inflow was high but, as the system operated under aerobic condition, nitrate nitrogen could not denitrified. Accordingly, total nitrogen was not attenuated with this system. To improve the reservoir water quality effectively, this system should be able to treat the storm runoff containing higher pollutant loadings. When the filter materials are clogged by the storm runoff instead of backwashing, it would be more efficient to replace them, Therefore, the use of natural materials which are light, easily obtaining and replaceable, and have high specific surface areas is recommended.

  • PDF

Design and analysis of isolation effectiveness for three-dimensional base-seismic isolation of nuclear island building

  • Zhu, Xiuyun;Lin, Gao;Pan, Rong;Li, Jianbo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.374-385
    • /
    • 2022
  • In order to investigate the application of 3D base-seismic isolation system in nuclear power plants (NPPs), comprehensive analysis of constitution and design theory for 3-dimensional combined isolation bearing (3D-CIB) was presented and derived. Four different vertical stiffness of 3D-CIB was designed to isolate the nuclear island (NI) building. This paper aimed at investigating the isolation effectiveness of 3D-CIB through modal analysis and dynamic time-history analysis. Numerical results in terms of dynamic response of 3D-CIB, relative displacement response, acceleration and floor response spectra (FRS) of the superstructure were compared to validate the reliability of 3D-CIB in mitigating seismic response. The results showed that 3D-CIB can significantly attenuate the horizontal acceleration response, and a fair amount of the vertical acceleration response reduction of the upper structure was still observed. 3D-CIB plays a significant role in reducing the horizontal and vertical FRS, the vertical FRS basically do not vary with the floor height. The smaller the vertical stiffness of 3D-CIB is, the better the vertical isolation effectiveness is, whereas, it will increase the displacement and the rocking effect of superstructure. Although the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted, it should be designed by properly accounting for the balance between the isolation effectiveness and displacement control including rocking effect. The results of this study can provide the technical basis and guidance for the application of 3D-CIB to engineering structure.