• 제목/요약/키워드: Upper Ordovician

검색결과 27건 처리시간 0.028초

금풍광산 광화대에 대한 전기탐사 반응 (Electrical Responses on Mineralized Zone in Geumpung Mine)

  • 정연호;김정호;변중무
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.231-236
    • /
    • 2007
  • Electrical resistivity, self-potential and time-domain induced polarization methods were conducted for study of electrical responses on vein-type sulfides ore, which is intruding limestone and dolomite of Ordovician, of Geumpung mine located in Dojeon-ri, Susan-myeon, Jecheon-si, Chungbuk. Sulfides bearing chalcopyrite, pyrrhotite and galena etc. are deposited in disseminated or vein-type. Good result that resistivity and self-potential surveys detect high grade-estimated mineralized zone located in upper part of existing low grade ore zone is acquisited and is to some extent consistent with induced polarization. Furthmore, a new mineralization zone directing EW is detected.

  • PDF

"옥천층군(沃川層群)의 지질시대(地質時代)에 관(關)하여"에 대(對)한 회답(回答) (Reply to the Article "On the Geological Age of the Ogcheon Group" by C.M. Son)

  • 김옥준
    • 자원환경지질
    • /
    • 제3권3호
    • /
    • pp.187-191
    • /
    • 1970
  • There is a discrepancy in opinion regarding geological age of Okchon system among professor C.M. Son and the writer who represent the two school of thought in precambrian stratigraphy in Korea as a whole. This brief article is a reply to the recent paper by C.M. Son titled "On the geological age of the Ogcheon Group" The discrepancy in opinion on the age Okchon system is based mainly on the difference in opinion about the age of Majeonri, Hwachonri and Kounri formations, the age of which professor Son believes as post-ordovician and regards them as a part of the Great Limestone series and the base of the Ogchon Group. The writer is in a opinion that Okchon system belong to precambrian in age and Majeonri-, Hwachonri-, and Kounri formations are the same formation composing an upper member of Okchon system. The writer's opinion is based on the facts that i) stratigraphical sequence of Okchon system established by the writer was accepted by C.M. Son who used believed the reverse order in sequence and confessed his mistake in his article; and ii) regional stratigraphy and structure strongly support's to writer's opinion. The writer pointed out and discussed in this paper various facts which do not support Son's idea by any means.

  • PDF

제천군(提川郡) 하천리(荷川里)-월굴리(月窟里) 지역(地域)의 지질구조(地質構造)와 암석학적(岩石學的) 연구(硏究) (The Study of Structure and Petrology of the Area between Hachonri and Weolgulri, Jecheon-gun)

  • 김옥준;유강민
    • 자원환경지질
    • /
    • 제10권1호
    • /
    • pp.19-35
    • /
    • 1977
  • The study area is located in between Hacheonri and Weolgulri, Jecheon-gun where the formations of Okcheon group and Chosun group come in contact and the stratigraphy and geological age of the Okcheon group have been debated among previous workers. The dolomitic limestone which distributed at Cheongam and Dumusil is clarified as the Hyangsanri dolomite formation and the quartzite distributed at Cheongam and Howeunri as Taehyangsan quartzite formation. The newly named Soorumsan schist interbedded in the Great Limestone Series was previously classified Seochangri formation. It is also classified that the formation formerly named as Seochangri was divided into newly named Manji schist which seems to be correlated to Kemyeongsan and Munjuri formation. The formation formerly named as Buknori is clarified as Hwanggangri formation. The Samtaesan formation has been clarified as the lower and upper limestone beds which belong to the Great Limestone Series. The area divided into two groups, that is, Okcheon system of Pre-cambrian age occupies western part and the Great Limestone Series of Chosun system of Cambro-Ordovician age eastern part of this area. Okcheon system consists in ascending order of Manji schist, Hyangsanri dolomite, Taehyangsan quartzite, Munjuri schist, and Hwanggangri formation of meta-tillite. The Great Limestone Series of Chosun group consists in ascending order of lower limestone, Soorumsan schist, Hoosanri quartzite and upper limestone formations. Busan augen gneiss seems to be igneous origin. Unmetamorphosed shale interbed can be traced in the Soorumsan schist. Previous study (Kims, 1974) reveals that meta-volcanic rocks are distributed from south to north along contact zone of the Okcheon and Chosun groups, and it has been confirmed that the meta-volcanics crop out continuously from the adjacent southern quardrangle into the southern part of the area studied, intruding along the fault zone between the Okcheon and Chosun groups which seems to be upthrust as in the area south. This evidence coincides with Kims' work (1974) which states that the Precambrian Okcheon group is largely overturned and thrusted over the Chosun group.

  • PDF

구봉석회석광산의 지질조사보고(地質調査報告) (Geologic Report on the Goobong Limestone Mine)

  • 이대성
    • 자원환경지질
    • /
    • 제3권1호
    • /
    • pp.17-24
    • /
    • 1970
  • The purpose of this report is to prepare a data for the economic evaluation on the Goobong Limestone Mine which is located at the south-eastern corner of the Yongchun Quadrangle scaled in 1:50,000. The accessibility from the mine to railroad was considered in two ways. One is to Dodam Station on Central Railway Line and the other is to reach Songjung-ni village which is near Sangyong Station on Hamback Railway Line. The distance of the former way is 26.7km and the later is 24.2km. Geologically the mine is situated near the base of the Greast Limestone Series which strikes generally $N25^{\circ}{\sim}30^{\circ}E$. The series comprises six different formations from older to younger; Pungchon Limestone Formation and Whajol Formation of Cambrian age, and Dongjum Quartzite Formation, Dumudong Formation, Maggol Limestone Formation and Goseong Formation of lower to middle Ordovician age. 82 samples; 48 from Pungchon Limestone Formation, 11 from Dumudong Formation, 15 from Maggol Limestone Formation and 8 from Goseong Formation, were taken from the series in the crossed direction to the general trend of the series as shown in geological map. They were chemically analyzed on the components of CaO, MgO, $SiO_2$, $R_2O_3(Al_2O_3+Fe_2O_3)$ and ignition loss as shown in table 2, table 3, table 4, and table 5. As seen from the tables, among the formations of the series, middle to upper parts of the Pungchon Limestone Formation and middle and upper parts of the Dumudong Formation have chemical composition as available source for the raw material of cement industry, not only that but also the part of the Pungchon Formation was highly evaluated as source for the flux of iron smelting and the raw material of carbide manufacturing because of its high purity of calcium carbonate.

  • PDF

전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론 (Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications)

  • 권이균
    • 자원환경지질
    • /
    • 제45권3호
    • /
    • pp.317-333
    • /
    • 2012
  • 전기 고생대 태백산분지 영월층군은 탄산염-규산쇄설성 퇴적암 복합체로서 하부로부터 삼방산층, 마차리층, 와곡층, 문곡층, 영흥층으로 이루어져있다. 영월층군에 대한 순차층서학적 분석에 따르면 중기 캠브리아기에 일어난 범람에 의해 최하부의 규산쇄설성 사질 퇴적암이 우세한 삼방산층이 퇴적되었다. 이어지는 후중기 캠브리아기 ~ 전후기 캠브리아기에 지속적으로 발생한 빠른 해수면 상승으로 마차리층 하부에는 셰일, 입자암, 각력암층을 협재한 사면 혹은 심부 램프 시퀀스가 형성되었다. 후기 캠브리아기 동안 지속된 해수면 상승은 실질적인 퇴적가능공간을 창출하였고, 조하대 환경에 탄산염 퇴적물 공장이 만들어졌으며, 탄산염 대지에는 마차리층을 구성하는 탄산염암이 우세한 조하대 시퀀스가 형성되었다. 마차리층 상부의 와곡층은 후후기 캠브리아기의 완만한 해수면 상승국면에서 만들어진 탄산염 램프 시퀀스로 해석되며, 퇴적 당시에는 리본 탄산염암과 탄산염 역암을 포함하는 이회암으로 구성되었던 것으로 보인다. 와곡층은 퇴적직후에 일차적으로 캠브리아기와 오르도비스기 사이의 해수면 하강국면에서 불안전 백운암화 과정을 거치고, 후에 심부 매몰 속성환경에서 광범위한 백운암화 작용을 받은 것으로 해석된다. 전기 오르도비스기에도 세계적인 해수면 상승과 해침은 지속되었으며, 영월층군의 조하대 램프 퇴적환경은 그대로 유지되어 탄산염 역암층을 협재하는 석회이암과 이회암이 교호하는 전형적인 램프 시퀀스인 문곡층이 형성되었다. 문곡층은 중기 오르도비스기에 퇴적된 것으로 알려진 영흥층에 덮여 있다. 영흥층은 주로 윤회층리를 보이는 조석대지 탄산염암으로 이루어져 있으며, 문곡층의 최상부에서 조하대 퇴적환경이 영흥층의 조석대지 퇴적환경으로 변화한다. 세계적 1차 규모 순차 경계면인 소크(Sauk)와 티피카누(Tippecanoe) 시퀀스의 경계는 영흥층 중부에서 관찰되는 최소퇴적가능공간 부근에서 인지된다. 중기 오르도비스기 초기의 세계적 해수면 하강과 이어지는 해수면의 급격한 상승은 영흥층의 전반적인 상향 천해화 윤회층의 전진퇴적체를 형성하였다. 영월층군이 퇴적된 영월 탄산염 대지의 상대적 해수면 변동곡선을 복원해 보면 같은 태백산 분지의 태백층군이 퇴적된 태백 탄산염 대지의 해수면 변동 곡선과 유사함을 확인할 수 있다. 이것은 두 개의 탄산염 대지가 유사한 조 구조적 운동 역사를 갖는다는 것을 의미하며, 이러한 유사성은 영월층군이 형성된 영월 탄산염 대지가 비록 태백층군이 퇴적된 태백 탄산염 대지와 상이한 퇴적시스템을 갖기는 하지만 상대적으로 가까운 지역에 속해 있었음을 암시한다. 퇴적층서 분석결과에 따르면 영월 탄산염 대지는 태백 탄산염 대지에 비해 상대적으로 열린 천해 환경이었을 것으로 추측된다. 고생대 후기와 중생대 전기에 걸쳐 발생한 북중국지괴와 남중국지괴의 충돌 시기에 영월 탄산염 대지와 태백 탄산염 대지가 복잡한 이동과정을 거쳐 현재의 태백산 분지에 모이게 된 것으로 해석된다.

월악산화강암(月岳山花崗岩)의 접촉변성(接觸變成)에 관(關)하여 (Study on The Contact Metamorphism of Weolagsan Granite)

  • 이대성;강준남
    • 자원환경지질
    • /
    • 제11권4호
    • /
    • pp.169-182
    • /
    • 1978
  • The Weolagsan area consists of four units; (1) Low grade meta-sediments of the upper members of Ogcheon age unknown group such as Changri (mainly black slate and phyllitic rock), Majeonri (mainly alternation of slate, limestone and chert) and Hwanggangri Formation (pebble bearing phyllitic sediments); (2) Samtaesan Formation of Chosun System of Ordovician; (3) So called meta-volcanics and (4) Weolagsan Granite and its associations which intruded above mentioned meta-sediments and meta-volcanics. This study was focused to know the Woelagsan granite and its metasomatic effects to the country rocks petrographically and petrochemically. According to the field survey, microscopic work and some chemical analysis, the granite is a "normal granite" based on the Streckeisen's classification and belongs to a mass of the Central-zone younger group in Ogcheon geosynclinal belt. The granite metasomatized the country rocks along its northern contact zone. Zone of calcareous and cherty rocks (Majeonri formation) was silicified partly and skarned locally at the contact with the granite. The chemical analysis of the zone show no difinite variations in contents of $SiO_2$ and CaO with the distance from the granite. It seems to be indicated that the silicification of this part was not so metasomatized by the granite body, but thermally affected as much as to be partially remelted in the specific parts of the formations. Meta-volcanic rock zone was slightly chloritized near contact with the granite. Limestone of Samtaesan Formation was silicified and skarned along the contact zone by the granite body. The chemical analysis of the zone show some noticiable changes in compositions of $SiO_2$ and CaO with distance from the granite boundary. It can be imagined that the silicification of this zone was metasomatically originated by Woelagsan Granite. According to chemical analysis on several trace elements, the ratio of Zn/Cr and Ni/Cr are relatively higher than that of Cu/Cr in the above mentioned silicified zones. Generally the variation of these metal elements in the zones tend to be regular with distance from the granite body.

  • PDF

둔전금광산 북광상에서 산출되는 다상포유물내의 고상 (Solid Phases in Polyphase Inclusions from North Ore Deposits, Dunjeon Gold Mine)

  • 박희인;이찬희
    • 자원환경지질
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 1991
  • North ore deposits of the Dunjeon gold mine is disseminated-stockworks deposits emplaced in Ordovician Dongjeom quartzite. Six types of fluid inclusions are recongnized in the stage I quartz. Among them polyphase inclusions(type-IV-A, B) are predominent in the lower part of stage I quartz crystals whereas liquid and gas inclusions(type I, II) are abundant in the upper part of the same quartz crystals. Liquid $CO_2$-bearing inclusions(type III-A, B)occur as pseudosecondary inclusions. Solid phases in polyphase inclusions are identified by using scanning electron microscopy combined with energy dispersive x-ray spectroscopy. The solid phases are as follows; halite, sylvite, hydrophyllite, quartz, muscovite, calcite, ankerite, K-Mg-Fe-Al-Si mineral, Ca-Fe-Si mineral, Mg-Al-Si mineral, two kinds of Fe-mineral and Cu-Fe mineral. Results of freezing and heating experiments of fluid inclusions and identification of daughter minerals in polyphase inclusions in the stage I quartz reveal that ore fluids were high saline system NaCl-KCl-$CaCl_2$-$H_2O$ in the earier stage and then evolved to rather simple system NaCl-$H_2O$ in the later stage, and temporally fluid mixing occured with system $CO_2$-$H_2O$. Homogenization temperatures and salinity of fluid inclusions in the stage I range from 290 to $454^{\circ}C$ and from 0.2 to 54.2 wt. % equivalent to NaCl.

  • PDF

대흥백운석광산(大興白雲石鑛山)의 지질광상(地質鑛床) 개사보고(槪査報告) (A Preliminary Report on the Geology and Ore Deposit of Daeheung Dolomite Mine)

  • 유병화
    • 자원환경지질
    • /
    • 제4권3호
    • /
    • pp.113-119
    • /
    • 1971
  • The Daeheung Dolomite Mine, which is about 6km south of Danyang, Chungcheongbugdo, is coincided with almost central portion of the Danyang quardrangle scaled in 1 : 50,000. The purpose of this report is to prepare a information for the economic evaluation on the mine. Geology of the region is composed of worm-eaten limestone, crystalline limestone, crystalline dolomite rock, sandstone and shale from bottom, those are applicable to socalled Dumugol and Maggol formation of Ordovician, and batholithic biotite granite is intruded the west-side of the ditto sedimentary rocks. The dolomite bed, emplaced in bottom of the upper limestone formation, so-called Maggol formation, is about 270m in thickness, and dips $30^{\circ}{\sim}50^{\circ}$ northwest. The facies of the dolomite rock contained many brucite crystals is not only coarse-grained crystalline, but also micro crystalline in contact metasomatic parts. 25 samples were taken from the two series, A and B, in the nearly crossed direction to the strike of the dolomite bed as shown in the geological map. They were chemically analysed on the components of MgO, CaO, and $SiO_2$ as shown in Table 2. The estimate ore reserves total some 107,200,000 metric tons above the 320m level with the following average contents: MgO 21.80%, CaO 29.27% and $SiO_2$ 0.64%. It is caused by brucite minerals that MaO content in the dolomite rock is higher than pure dolomite (21.7%). The dolomite ore is possible in use for magnesian fertilizer, magnesian cement and refractory material, especially the microcrystalline dolomite ore is useful for a refractory material in furnaces of iron industries.

  • PDF

New discoveries, skarn zonation, and skarn textures at the Geodo Mine in the Taebaeksan Basin, South Korea

  • Kim, Eui-Jun;Yang, Seok-Jun;Shin, Seungwook;Nam, Hyeong-Tae;Shin, Dongbok;Im, Heon-Kyoung;Oh, Il-Hwan;No, Sang-Gun;Cho, Sung-Jun;Park, Maeng-Eon
    • Geosciences Journal
    • /
    • 제22권6호
    • /
    • pp.881-889
    • /
    • 2018
  • The Geodo skarn deposit is located in the Taebaeksan Basin, central eastern Korean Peninsula. The geology of the deposit consists of Cambrian to Ordovician calcareous sedimentary rocks and the Cretaceous Eopyeong granitoids. The skarns at Geodo occur around the Eopyeong granitoids, which consist, from early to late, of magnetite-bearing equigranular quartz monzodiorite, granodiorite, and dykes. These dykes emanated randomly from equigranular granodiorite and some of dykes spatially accompany skarns. Skarn Fe mineralization, referred as Prospect I and II in this study, is newly discovered beyond previously known skarns adjacent to the quartz monzodiorite. These discoveries show a vertical and lateral variation of skarn facies, grading from massive reddish-brown garnet-quartz in a lower and proximal zone to banded in an upper and distal zone, reflecting changes in lithofacies of the host rocks. Skarn veins in distal locations are parallel to sedimentary laminae, suggesting that lithologic control is important although proximal skarn has totally obliterated primary structures, due to intense retrograde alteration. Skarns at Geodo are systematically zoned relative to the causative dykes. Skarn zonation comprises proximal garnet, distal pyroxene, and vesuvianite (only in Prospect I) at the contact between skarn and marble. Retrograde alteration is intensely developed adjacent to the contact with dykes and occurs as modification of the pre-existing assemblages and progressive destruction such as brecciation of the prograde assemblages. The retrograde alteration assemblages consist predominantly of epidote, K-feldspar, amphibole, chlorite, and calcite. Most of the magnetite (the main ore mineral), replaces calc-silicate minerals such as garnet in the lower proximal exoskarn, whereas it occurs massive in distal pyroxene and amphibole in the upper and distal exoskarn. The emanation of dykes from the equigranular granodiorite has provided channelways for ascent of skarn-forming fluids from a deep source, whereas the style and nature of skarns suggest that originally structurally-controlled skarn-forming fluids may migrate long distances laterally to produce skarn in calcareous sedimentary rocks.

Origin of limestone conglomerates in the Choson Supergroup(Cambro-Ordovician), mid-east Korea

  • Kwon Y.K.;Chough S.K.;Choi D.K.;Lee D.J.
    • 한국석유지질학회:학술대회논문집
    • /
    • 한국석유지질학회 2001년도 제8차 학술발표회 발표논문집
    • /
    • pp.63-65
    • /
    • 2001
  • The Chosen Supergroup (Cambro-Ordovician), mid-east Korea consists mainly of shallow marine carbonates and contains a variety of limestone conglomerates. These conglomerates largely comprise oligomictic, rounded lime-mudstone clasts of various size and shape (equant, oval, discoidal, tabular, and irregular) and dolomitic shale matrices. Most clasts are characterized by jigsaw-fit (mosaic), disorganized, or edgewise fabric and autoclastic lithology. Each conglomerate layer is commonly interbedded with limestone-dolomitic shale couplets and occasionally underlain by fractured limestone layer, capped by calcareous shale. According to composition, characteristic sedimentary structures, and fabric, limestone conglomerates in the Hwajol, Tumugol, Makkol, and Mungok formations of Chosen Supergroup can be classified into 4 types: (1) disorganized polymictic conglomerate (Cd), (2) horizontally stratified polymictic conglomerate (Cs), (3) mosaic conglomerate (Cm), and (4) disorganized/edgewise oligomictic conglomerate (Cd/e). These conglomerates are either depositional (Cd and Cs) or diagenetic (Cm and Cd/e) in origin. Depositional conglomerates are interpreted as storm deposits, tidal channel fills, or transgressive lag deposits. On the other hand, diagenetic conglomerates are not deposited by normal sedimentary processes, but formed by post-depositional diagenetic processes. Diagenetic conglomerates in the Chosen Supergroup are characterized by autoclastic and oligomictic lithology of lime-mudstone clasts, jigsaw-fit (mosaic) fabric, edgewise fabric, and a gradual transition from the underlying bed (Table 1). Autoclastic and oligomictic lithologies may be indicative of subsurface brecciation (fragmentation). Consolidation of lime-mudstone clasts pre-requisite for brecciation may result from dissolution and reprecipitation of CaCO3 by degradation of organic matter during burial. Jigsaw-fit fabric has been considered as evidence for in situ fragmentation. The edgewise fabric is most likely formed by expulsion of pore fluid during compaction. The lower boundary of intraformational conglomerates of depositional origin is commonly sharp and erosional. In contrast, diagenetic conglomerate layers mostly show a gradual transition from the underlying unit, which is indicative of progressive fragmentation upward (Fig. 1). The underlying fractured limestone layer also shows evidence for in situ fragmentation such as jigsaw-fit fabric and the same lithology as the overlying conglomerate layer (Fig, 1). Evidence from the conglomerate beds in the Chosen Supergroup suggests that diagenetic conglomerates are formed by in situ subsurface fragmentation of limestone layers and rounding of the fragments. In situ subsurface fragmentation may be primarily due to compaction, dewatering (upward-moving pore fluids), and dissolution, accompanying volume reduction. This process commonly occurs under the conditions of (1) alternating layers of carbonate-rich and carbonate-poor sediments and (B) early differential cementation of carbonate-rich layers. Differential cementation commonly takes place between alternating beds of carbonate-rich and clay-rich layers, because high carbonate content promotes cementation, whereas clay inhibits cementation. After deposition of alternating beds and differential cementation, with progressive burial, upward-moving pore fluid may raise pore-pressure in the upper part of limestone layers, due to commonly overlying impermeable shale layers (or beds). The high pore-pressure may reinforce propagation of fragmentation and cause upward-expulsion of pore fluid which probably produces edgewise fabric of tabular clasts. The fluidized flow then extends laterally, causing reorientation and further rounding of clasts. This process is analogous to that of autobrecciation, which can be analogously termed autoconglomeration. This is a fragmentation and rounding process whereby earlier semiconsolidated portions of limestone are incorporated into still fluid portions. The rounding may be due mainly to immiscibility and surface tension of lime-mud. The progressive rounding of the fragmented clasts probably results from grain attrition by fluidized flow. A synthetic study of limestone conglomerate beds in the Chosen Supergroup suggests that very small percent of the conglomerate layers are of depositional origin, whereas the rest, more than $80\%$, are of diagenetic origin. The common occurrence of diagenetic conglomerates warrants further study on limestone conglomerates elsewhere in the world.

  • PDF