• Title/Summary/Keyword: Upper Atmosphere

Search Result 235, Processing Time 0.021 seconds

SIMULATION OF THE TISSUE EQUIVALENT PROPORTIONAL COUNTER IN THE INTERNATIONAL SPACE STATION WITH GEANT4 (Geant4를 활용한 국제우주정거장 내의 조직등가비례계수기 모의 실험)

  • Pyo, Jeong-Hyun;Lee, Jae-Jin;Nam, Uk-Won;Kim, Sung-Hwan;Kim, Hyun-Ok;Lim, Chang-Hwy;Park, Kwi-Jong;Lee, Dae-Hee;Park, Young-Sik;Moon, Myung-Kook
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.81-86
    • /
    • 2012
  • The International Space Station (ISS) orbits the Earth within the inner radiation belt, where high-energy protons are produced by collisions of cosmic rays to the upper atmosphere. About 6 astronauts stay in the ISS for a long period, and it should be important to monitor and assess the radiation environment in the ISS. The tissue equivalent proportional counter (TEPC) is an instrument to measure the impact of radiation on the human tissue. KASI is developing a TEPC as a candidate payload of the ISS. Before the detailed design of the TEPC, we performed simulations to test whether our conceptual design of the TEPC will work propertly in the ISS and to predict its performance. The simulations estimated that the TEPC will measure the dose equivalent of about 1:1 mSv during a day in the ISS, which is consistent with previous measurements.

Experimental and Numerical Investigation of the Performance of Vertical Thermosyphon for Frozen Ground Stabilization (실험과 수치해석을 통한 동토지반 안정화용 수직형 열사이펀의 성능평가)

  • Lee, Jangguen;Lee, Chulho;Jang, Changkyu;Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.45-56
    • /
    • 2014
  • Frozen ground in cold region consists of an upper active layer and lower permafrost which is permanently frozen land. During the summer season, the air temperature is high enough to make the frozen ground melt, which causes the reduction of soil strength and thaw settlement. These phenomena result in structural instability, so it is necessary to apply frozen ground stability techniques. Thermosyphon is a closed natural two-phase convection device to maintain the ground temperature below $0^{\circ}C$ by extracting heat from the ground and discharges it into the atmosphere. Experimental and numerical investigation has been performed to estimate the effect of the refrigerant filling ratio in thermosyphon using R-134a refrigerant and the thermal conductance of the thermosyphon.

Observing System Experiment Based on the Korean Integrated Model for Upper Air Sounding Data in the Seoul Capital Area during 2020 Intensive Observation Period (2020년 수도권 라디오존데 집중관측 자료의 한국형모델 기반 관측 영향 평가)

  • Hwang, Yoonjeong;Ha, Ji-Hyun;Kim, Changhwan;Choi, Dayoung;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.311-326
    • /
    • 2021
  • To improve the predictability of high-impact weather phenomena around Seoul, where a larger number of people are densely populated, KMA conducted the intensive observation from 22 June to 20 September in 2020 over the Seoul area. During the intensive observation period (IOP), the dropsonde from NIMS Atmospheric Research Aircraft (NARA) and the radiosonde from KMA research vessel Gisang1 were observed in the Yellow Sea, while, in the land, the radiosonde observation data were collected from Icheon and Incheon. Therefore, in this study, the effects of radiosonde and dropsonde data during the IOP were investigated by Observing System Experiment (OSE) based on Korean Integrated Model (KIM). We conducted two experiments: CTL assimilated the operational fifteen kinds of observations, and EXP assimilated not only operational observation data but also intensive observation data. Verifications over the Korean Peninsula area of two experiments were performed against analysis and observation data. The results showed that the predictability of short-range forecast (1~2 day) was improved for geopotential height at middle level and temperature at lower level. In three precipitation cases, EXP improved the distribution of precipitation against CTL. In typhoon cases, the predictability of EXP for typhoon track was better than CTL, although both experiments simulated weaker intensity as compared with the observed data.

A Study of Iterative QC-BC Method for AMSU-A in the KIAPS Data Assimilation System (KIAPS 자료동화 시스템에서 AMSU-A의 품질검사 및 편향보정 반복기법에 관한 연구)

  • Jeong, Han-Byeol;Chun, Hyoung-Wook;Lee, Sihye
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.241-255
    • /
    • 2019
  • Bias correction (BC) and quality control (QC) are essential steps for the proper use of satellite observations in data assimilation (DA) system. BC should be calculated over quality controlled observation. And also QC should be performed for bias corrected observation. In the Korea Institute of Atmospheric Prediction Systems (KIAPS) Package for Observation Processing (KPOP), we adopted an adaptive BC method that calculates the BC coefficients with background at the analysis time rather than using static BC coefficients. In this study, we have developed an iterative QC-BC method for Advanced Microwave Sounding Unit-A (AMSU-A) to reduce the negative feedback from the interaction between BC and QC. The new iterative QC-BC is evaluated in the KIAPS 3-dimensional variational (3DVAR) DA cycle for January 2016. The iterative QC-BC method for AMSU-A shows globally significant benefits for error reduction of the temperature. The positive impacts for the temperature were predominant at latitudes of $30^{\circ}{\sim}90^{\circ}$ of both hemispheres. Moreover, the background warm bias across the troposphere is decreased. Even though AMSU-A is mainly designed for atmospheric temperature sounding, the improvement of AMSU-A pre-processing module has a positive impact on the wind component over latitudes of $30^{\circ}S$ near upper-troposphere, respectively. Consequently, the 3-day-forecast-accuracy is improved about 1% for temperature and zonal wind in the troposphere.

Characteristics of Sea Breezes at Coastal Area in Boseong (보성 해안 지역에서의 해풍 특성)

  • Lim, Hee-Jeong;Lee, Young-Hee
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2019
  • The characteristics of the sea breeze were investigated using the wind and temperature data collected from 300-m tower at Boseong from May 2014 to April 2018. Sea breeze day was detected using following criteria: 1) the presence of a clear change in wind direction near sunrise (between 1 hour after sunrise and 5 hours before sunset) and sunset (from 1500 LST to midnight), 2) presence of thermal forcing of sea breeze and 3) no heavy precipitation (rain < $10mm\;d^{-1}$). Sea breeze days occurred on 569 days for 4 years. The monthly distribution of sea breeze day occurrence shows maxima in May and September and minimum in December. The average onset and cessation times of the sea breeze are 0942 LST and 1802 LST, respectively. Although the 10-m wind shows clockwise rotation with time in the afternoon, the observed hodograph does not show an ideal elliptical shape and has different characteristics depending on the upper synoptic wind direction. Vertical structure of sea breeze shows local maximum of wind speed and local minimum of virtual potential temperature at 40 m in the afternoon for most synoptic conditions except for southeasterly synoptic wind ($60^{\circ}{\sim}150^{\circ}$) which is in the same direction as onshore flow. The local minimum of temperature is due to cold advection by sea breeze. During daytime, the intensity of inversion layer above 40 m is strongest in westerly synoptic wind ($240^{\circ}{\sim}330^{\circ}$) which is in the opposite direction to onshore flow.

Influence of UTLS Ozone on the QBO-MJO Connection: A Case Study Using the GloSea5 Model (상부 대류권-하부 성층권 오존이 성층권 준 2년주기 진동과 매든-줄리안 진동 상관성에 미치는 영향: GloSea5 이용 사례)

  • Oh, Jiyoung;Son, Seok-Woo;Back, Seung-Yoon
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.223-233
    • /
    • 2022
  • Recent studies have shown that Madden-Julian Oscillation (MJO) is modulated by Quasi-Biennial Oscillation (QBO) during the boreal winter; MJO becomes more active and predictable during the easterly phase of QBO (EQBO) than the westerly phase (WQBO). Despite growing evidences, climate models fail to capture the QBO-MJO connection. One of the possible reasons is a weak static stability change in the upper troposphere and lower stratosphere (UTLS) by neglecting QBO-induced ozone change in the model. Here, we investigate the possible impact of the ozone-radiative feedback in the tropical UTLS on the QBO-MJO connection by integrating the Global Seasonal Forecasting System 5 (GloSea5) model. A set of experiments is conducted by prescribing either the climatological ozone or the observed ozone at a given year for the EQBO-MJO event in January 2006. The realistic ozone improves the temperature simulation in the UTLS. However, its impacts on the MJO are not evident. The MJO phase and amplitude do not change much when the ozone is prescribed with observation. While it may suggest that the ozone-radiative feedback plays a rather minor role in the QBO-MJO connection, it could also result from model biases in UTLS temperature and not-well organized MJO in the model.

Estimation of Road Sections Vulnerable to Black Ice Using Road Surface Temperatures Obtained by a Mobile Road Weather Observation Vehicle (도로기상차량으로 관측한 노면온도자료를 이용한 도로살얼음 취약 구간 산정)

  • Park, Moon-Soo;Kang, Minsoo;Kim, Sang-Heon;Jung, Hyun-Chae;Jang, Seong-Been;You, Dong-Gill;Ryu, Seong-Hyen
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.525-537
    • /
    • 2021
  • Black ices on road surfaces in winter tend to cause severe and terrible accidents. It is very difficult to detect black ice events in advance due to their localities as well as sensitivities to surface and upper meteorological variables. This study develops a methodology to detect the road sections vulnerable to black ice with the use of road surface temperature data obtained from a mobile road weather observation vehicle. The 7 experiments were conducted on the route from Nam-Wonju IC to Nam-Andong IC (132.5 km) on the Jungang Expressway during the period from December 2020 to February 2021. Firstly, temporal road surface temperature data were converted to the spatial data with a 50 m resolution. Then, the spatial road surface temperature was normalized with zero mean and one standard deviation using a simple normalization, a linear de-trend and normalization, and a low-pass filter and normalization. The resulting road thermal map was calculated in terms of road surface temperature differences. A road ice index was suggested using the normalized road temperatures and their horizontal differences. Road sections vulnerable to black ice were derived from road ice indices and verified with respect to road geometry and sky view, etc. It was found that black ice could occur not only over bridges, but also roads with a low sky view factor. These results are expected to be applicable to the alarm service for black ice to drivers.

A Case Study of Snowfall Event over Yeongdong Region on March 1-2, 2021 (2021년 3월 1-2일 영동지역 강설 사례 연구)

  • Bo-Yeong Ahn;Byunghwan Lim
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.119-134
    • /
    • 2023
  • The synoptic, thermodynamic, and dynamic characteristics of a snowfall event that occurred in the Yeongdong region on March 1-2, 2021, were investigated. Surface weather charts, ERA5 reanalysis data, rawinsonde data, GK-2A satellite data, and WISSDOM data were used for analysis. The snow depth, exceeding 10 cm, was observed at four weather stations during the analysis period. The maximum snow depth (37.4 cm) occurred at Bukgangneung. According to the analysis of the weather charts, old and dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to developing convective clouds and snowfall over Bukgangneung. In particular, based on the thermodynamic and kinematic vertical analysis, we suggest that strong winds attributable to the vertical gradient of potential temperature in the low layer and the development of convective instability due to cold advection played a significant role in the occurrence of snowfall in the Yeongdong region. These results were confirmed from the vertical analysis of the rawinsonde data.

A Case Study on Near-Cloud Turbulence around the Mesoscale Convective System in the Korean Peninsula (한반도에서 발생한 중규모 대류계의 구름 주변 난류 발생 메커니즘 사례 연구)

  • Sung-Il Yang;Ju Heon Lee;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.153-176
    • /
    • 2024
  • At 0843 UTC 30 May 2021, a commercial aircraft encountered severe turbulence at z = 11.5 km associated with the rapid development of Mesoscale Convective System (MCS) in the Gyeonggi Bay of Korea. To investigate the generation mechanisms of Near-Cloud Turbulence (NCT) near the MCS, Weather Research and Forecasting model was used to reproduce key features at multiple-scales with four nested domains (the finest ∆x = 0.2 km) and 112 hybrid vertical layers. Simulated subgrid-scale turbulent kinetic energy (SGS TKE) was located in three different regions of the MCS. First, the simulated NCT with non-zero SGS TKE at z = 11.5 km at 0835 UTC was collocated with the reported NCT. Cloud-induced flow deformation and entrainment process on the downstream of the overshooting top triggered convective instability and subsequent SGS TKE. Second, at z = 16.5 km at 0820 UTC, the localized SGS TKE was found 4 km above the overshooting cloud top. It was attributed to breaking down of vertically propagating convectively-induced gravity wave at background critical level. Lastly, SGS TKE was simulated at z = 11.5 km at 0930 UTC during the dissipating stage of MCS. Upper-level anticyclonic outflow of MCS intensified the environmental westerlies, developing strong vertical wind shear on the northeastern quadrant of the dissipating MCS. Three different generation mechanisms suggest the avoidance guidance for the possible NCT events near the entire period of the MCS in the heavy air traffic area around Incheon International Airport in Korea.

The Relationship between the Arctic Oscillation and Heatwaves on the Korean Peninsula (여름철 북극 진동과 한반도 폭염의 관련성)

  • Jeong-Hun Kim;El Noh;Maeng-Ki Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.33 no.1_2
    • /
    • pp.25-35
    • /
    • 2021
  • In this study, we identified characteristics of heatwaves on the Korean Peninsula and related atmospheric circulation patterns using data on the daily maximum temperature (TMX) and reanalysis data for the past 42 years (1979-2020) and analyzed their connection to the Arctic oscillation (AO). The heatwave on the Korean Peninsula showed to be stronger and more frequent in the 2000s. The recent strong and frequent heatwaves on the Korean Peninsula are mainly affected by abnormal high-pressure over the Korean Peninsula on the middle/upper-level atmosphere and the strengthening of the North Pacific high pressure. Interestingly, composite difference of sea level pressure showed very similar results to the positive AO pattern. The correlation coefficients between the summertime AO and the TMX and HWD of the Korean Peninsula were 0.407 and 0.437, respectively, which showed a statistical significance in 1%, and showed a clear relationship with the abnormal high-pressure over the Korean Peninsula and the strengthening of the North Pacific high pressure. In addition, in the positive AO phase, the TMX and HWD of the Korean peninsula were approximately 30.1 ℃ and 14.6 days, which were about 1.2 ℃ and 8.8 days higher than in the negative AO phase, respectively. As a result of the 15-year moving average correlation analysis, the relationship between the heatwave and AO on the Korean Peninsula has increased significantly since 2003, and the linear relationship between them has become more apparent. Moreover, after the 2000s, when the relationship developed, AO had more strongly induced the atmospheric circulation pattern to be more favorable to the occurrence of heatwaves in the Korean Peninsula. This study implies that understanding the AO, which is the large-scale variability in the Northern Hemisphere, and the Arctic-mid latitude teleconnection, can improve the performance of global climate models and help predict the seasonality of the summer heatwave on the Korean Peninsula.