Browse > Article
http://dx.doi.org/10.14191/Atmos.2022.32.3.223

Influence of UTLS Ozone on the QBO-MJO Connection: A Case Study Using the GloSea5 Model  

Oh, Jiyoung (School of Earth and Environmental Sciences, Seoul National University)
Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University)
Back, Seung-Yoon (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Atmosphere / v.32, no.3, 2022 , pp. 223-233 More about this Journal
Abstract
Recent studies have shown that Madden-Julian Oscillation (MJO) is modulated by Quasi-Biennial Oscillation (QBO) during the boreal winter; MJO becomes more active and predictable during the easterly phase of QBO (EQBO) than the westerly phase (WQBO). Despite growing evidences, climate models fail to capture the QBO-MJO connection. One of the possible reasons is a weak static stability change in the upper troposphere and lower stratosphere (UTLS) by neglecting QBO-induced ozone change in the model. Here, we investigate the possible impact of the ozone-radiative feedback in the tropical UTLS on the QBO-MJO connection by integrating the Global Seasonal Forecasting System 5 (GloSea5) model. A set of experiments is conducted by prescribing either the climatological ozone or the observed ozone at a given year for the EQBO-MJO event in January 2006. The realistic ozone improves the temperature simulation in the UTLS. However, its impacts on the MJO are not evident. The MJO phase and amplitude do not change much when the ozone is prescribed with observation. While it may suggest that the ozone-radiative feedback plays a rather minor role in the QBO-MJO connection, it could also result from model biases in UTLS temperature and not-well organized MJO in the model.
Keywords
QBO-MJO connection; UTLS; Ozone-radiative feedback;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Back, S.-Y., J.-Y. Han, and S.-W. Son, 2020: Modeling evidence of QBO- MJO connection: A case study. Geophys. Res. Lett., 47, e2020GL089480.
2 Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179-229.   DOI
3 Butchart, N, and Coauthors, 2018: Overview of experiment design and comparison of models participating in phase 1 of the SPARC quasi-biennial oscillation initiative (QBOi). Geosci. Model Dev., 11, 1009-1032.   DOI
4 Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 2552-2568.   DOI
5 Copernicus Climate Change Service 2017: ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). ECMWF [Available online at https://cds.climate.copernicus.eu/cdsapp#!/home].
6 Davis, S. M., K. H. Rosenlof, B. Hassler, D. F. Hurst, W. G. Read, H. Vomel, H. Selkirk, M. Fujiwara, and R. Damadeo, 2016: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies, Earth Syst. Sci. Data, 8, 461-490, doi:10.5194/essd-8-461-2016.   DOI
7 Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.   DOI
8 Kim, H., J. H. Richter, and Z. Martin, 2019: Insignificant QBO-MJO prediction skill relationship in the SubX and S2S subseasonal reforecasts. J. Geophys. Res. Atmos., 124, 12655-12666, doi:10.1029/2019JD031416.   DOI
9 Lee, J. C. K., and N. P. Klingaman, 2018: The effect of the quasi-biennial oscillation on the Madden-Julian oscillation in the Met Office unified model global ocean mixed layer configuration. Atmos. Sci. Lett., 19, e816, doi:10.1002/asl.816.   DOI
10 Kim, H., F. Vitart, and D. Waliser, 2018: Prediction of the Madden-Julian Oscillation: A Reivew. J. Climate, 31, 9425-9443, doi:10.1175/JCLI-D-18-0210.1.   DOI
11 Kim, H., J. M. Caron, J. H. Richter, and I. R. Simpson, 2020: The lack of QBO-MJO connection in CMIP6 models. Geophys. Res. Lett., 47, e2020GL087295, doi:10.1029/2020GL087295.   DOI
12 Klotzbach, P., S. Abhik, H. H. Hendon, M. Bell, C. Lucas, A. G. Marshall, and E. C. J. Oliver, 2019: On the emerging relationship between the stratospheric quasibiennial oscillation and the Madden-Julian oscillation. Sci. Rep., 9, 2981, doi:10.1038/s41598-019-40034-6.   DOI
13 Li, D., K. P. Shine, and L. J. Gray, 1995: The role of ozone-induced heating anomalies in the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 121, 937-943.   DOI
14 Lim, Y., S.-W. Son, and D. Kim, 2018: MJO prediction skill of the subseasonal-to-seasonal prediction models. J. Climate, 31, 4075-4094, doi:10.1175/JCLI-D17-0545.1.   DOI
15 Hendon, H. H., and S. Abhik, 2018: Differences in vertical structure of the Madden-Julian oscillation associated with the quasi-biennial oscillation. Geophys. Res. Lett., 45, 4419-4428, doi: 10.1029/2018GL077207.   DOI
16 Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production, ECMWF Newsletter 147, ECMWF, Reading, UK [Available online at https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production].
17 Zhang, C., 2013: Madden-Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849-1870, doi: 10.1175/BAMS-D-12-00026.1.   DOI
18 Pohlmann, H., W. A. Muller, M. Bittner, S. Hettrich, K. Modali, K. Pankatz, and J. Marotzke, 2019: Realistic quasi-biennial oscillation variability in historical and decadal hindcast simulations using CMIP6 forcing. Geophys. Res. Lett., 46, 14118-14125, doi: 10.1029/2019GL084878.   DOI
19 Raphaldini, B., A. S. W. Teruya, Leite da Silva, P. Dias, L. Massaroppe, and D. Y. Takahashi, 2021: Stratospheric ozone and quasi-biennial oscillation (QBO) interaction with the tropical troposphere on intraseasonal and interannual timescales: a normal-mode perspective. Earth Syst. Dynam., 12, 83-101, doi:10.5194/esd-12-83-2021.   DOI
20 Janiga, M. A., C. J. Schreck, J. A. Ridout, M. Flatau, N. P. Barton, E. J. Metzger, and C. A. Reynolds, 2018: Subseasonal forecasts of convectively coupled equatorial waves and the MJO: Activity and predictive skill. Mon. Wea. Rev., 146, 2337-2360, doi:10.1175/MWR-D-17-0261.1.   DOI
21 Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden-Julian Oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 43, 1392-1398, doi:10.1002/2016GL067762.   DOI
22 Randel, W., F. Wu, A. Ming, and P. Hitchcock, 2021: A simple model of ozone-temperature coupling in the tropical lower stratosphere, Atmos. Chem. Phys., 21, 18531-18542, doi:10.5194/acp-21-18531-2021.   DOI
23 Sakaeda, N., J. Dias, and G. N. Kiladis, 2020: The unique characteristics and potential mechanisms of the MJOQBO relationship. J. Geophys. Res. Atmos., 125, e2020JD033196, doi:10.1029/2020JD033196.   DOI
24 Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden-Julian oscillation. J. Climate, 30, 1909-1922, doi:10.1175/JCLI-D-16-0620.1.   DOI
25 Tweedy, O. V., L. D. Oman, and D. W. Waugh, 2020: Seasonality of the MJO impact on upper tropospherelower stratosphere temperature, circulation, and composition. J. Atmos. Sci., 77, 1455-1473, doi:10.1175/JAS-D-19-0183.1.   DOI
26 Vitart, F., and Coauthors, 2017: The subseasonal to seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163-173, doi:10.1175/BAMS-D-16-0017.1.   DOI
27 Waliser, D. K., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 3006-3030.   DOI
28 Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917-1932.   DOI
29 Wang, S., M. K. Tippett, A. Sobel, Z. Martin, and F. Vitart, 2019: Impact of the QBO on prediction and predictability of the MJO convection. J. Geophys. Res. Atmos., 124, 11766-11782, doi:10.1029/2019JD030575.   DOI
30 Wheeler, M., and K. M. Weickmann, 2001: Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129, 2677-2694.   DOI
31 Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003.
32 Lim, Y., and S.-W. Son, 2020: QBO-MJO Connection in CMIP5 models, J. Geophys. Res. Atmos, 125, e2019-JD032157, doi:10.1029/2019JD032157.   DOI
33 Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical pacific. J. Atmos. Sci., 28, 702-708.   DOI
34 MacLachlan C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072-1084, doi:10.1002/qj.2396.   DOI
35 Marshall, A. G., H. H. Hendon, S.-W. Son, and Y. Lim, 2017: Impact of the quasi-biennial oscillation on predictability of the Madden-Julian oscillation. Climate. Dyn., 49, 1365-1377, doi:10.1007/s00382-016-3392-0.   DOI
36 Martin, Z., F. Vitart, S. Wang, and A. Sobel, 2020: The impact of the stratosphere on the MJO in a forecast model. J. Geophys. Res. Atmos., 125, e2019JD032106, doi:10.1029/2019JD032106.   DOI
37 Martin, Z., C. Orbe, S. Wang, and A. Sobel, 2021: The MJOQBO relationship in a GCM with stratospheric nudging. J. Climate, 34, 4603-4624, doi:10.1175/JCLI-D20-0636.1.   DOI
38 Martin, Z., S. Wang, J. Nie, and A. Sobel, 2019: The impact of the QBO on MJO convection in cloud- resolving simulations. J. Atmos. Sci., 76, 669-688, doi:10.1175/JAS-D-18-0179.1.   DOI
39 Lim, Y., S.-W. Son, A. G. Marshall, H. H. Hendon, and K.-H. Seo, 2019: Influence of the QBO on MJO prediction skill in the subseasonal- to-seasonal prediction models. Climate. Dyn., 53, 1681-1695, doi:10.1007/s00382-019-04719-y.   DOI
40 Madden, R. A., and P. R. Julian, 1972: Description of Global-Scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109-1123.   DOI
41 Nie, J., and A. Sobel, 2015: Responses of tropical deep convection to the QBO: Cloud-resolving simulations. J. Atmos. Sci., 72, 3625-3638, doi:10.1175/JAS-D-15-0035.1.   DOI
42 Sun, L., H. Wang, and F. Liu, 2019: Combined effect of the QBO and ENSO on the MJO. Atmos. Ocean. Sci. Lett., 12, 170-176, doi:10.1080/16742834.2019.1588064.   DOI
43 Butchart, N., A. A. Scaife, J. Austin, S. H. E. Hare, and J. R. Knight, 2003: Quasi-biennial oscillation in ozone in a coupled chemistry-climate model. J. Geophys. Res. Atmos., 108, 4486.   DOI
44 Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics, Academic, San Diego, Calif., 489 pp.