• Title/Summary/Keyword: Upper Atmosphere

Search Result 235, Processing Time 0.024 seconds

The study of manganese removal mechanism in aeration-sand filtration process for treating bank filtered water (강변여과수 처리를 위한 포기-모래여과공정에서 망간제거 기작에 관한 연구)

  • Choi, Seung-Chul;Kim, Se-Hwan;Yang, Hae-Jin;Lim, Jae-Lim;Wang, Chang-Keun;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.341-349
    • /
    • 2010
  • It is well known that manganese is hard to oxidize under neutral pH condition in the atmosphere while iron can be easily oxidized to insoluble iron oxide. The purpose of this study is to identify removal mechanism of manganese in the D water treatment plant where is treating bank filtered water in aeration and rapid sand filtration. Average concentration of iron and manganese in bank filtered water were 5.9 mg/L and 3.6 mg/L in 2008, respectively. However, their concentration in rapid sand filtrate were only 0.11 mg/L and 0.03 mg/L, respectively. Most of the sand was coated with black colored manganese oxide except surface layer. According to EDX analysis of sand which was collected in different depth of sand filter, the content of i ron in the upper part sand was relatively higher than that in the lower part. while manganese content increased with a depth. The presence of iron and manganese oxidizing bacteria have been identified in sand of rapid sand filtration. It is supposed that these bacteria contributed some to remove iron and manganese in rapid sand filter. In conclusion, manganese has been simultaneously removed by physicochemical reaction and biological reaction. However, it is considered that the former reaction is dominant than the latter. That is, Mn(II) ion is rapidly adsorbed on ${\gamma}$-FeOOH which is intermediate iron oxidant and then adsorbed Mn(II) ion is oxidized to insoluble manganese oxide. In addition, manganese oxidation is accelerated by autocatalytic reaction of manganese oxide. The iron and manganese oxides deposited on the surface of the sand and then are aged with coating sand surface.

Response of Soil CO2 Fluxes to Seasonal Variations in a Grassplot (잔디밭에서 계절 변화에 따른 이산화탄소 플럭스 변동)

  • Kim, Park Sa;Kwon, Byung Hyuk;Kang, Dong Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1131-1142
    • /
    • 2014
  • In this study, the variations of the carbon dioxide fluxes were investigated with soil temperatures in the grassplot and seasonal variations of carbon dioxide concentrations and fluxes were analysed. Soil temperatures, carbon dioxide concentrations and fluxes were measured on the grassplot in Pukyong National University. Field measurements were carried out 25 times from March in 2010 to March in 2011 with nine points on the grassplot. Seasonal variations of carbon dioxide concentrations and fluxes showed an inverse relation. In summer, carbon dioxide concentrations are lower and carbon dioxide fluxes are higher. In winter, carbon dioxide concentrations are higher and carbon dioxide fluxes are lower. On the grassplot, carbon dioxide emission rate increase when the soil temperature is more than $20^{\circ}C$ and the emission rate decrease when the soil temperatures are less than $10^{\circ}C$. When the accumulated rainfall for five days before measurement day is 20~100 mm, it is showed that the more rainfall, the more carbon dioxide emissions. Carbon dioxide emission rate from the grassplot to the upper atmosphere was increased or decreased by the factors such as soil temperature, growth and wither of grass and rainfall. The results of this study showed that the emission of carbon dioxide in the grassplot is dominantly controlled by seasonal factors (especially soil temperature and rainfall).

A Study on $TiO_2$ Thin Film by PLD for Buffer Layer between Mesoproso $TiO_2$ and FTO of Dye-sensitized Solar Cell (염료 감응형 태양전지에서 Mesoproso $TiO_2$/FTO 사이에 완충층으로써의 PLD로 증착한 $TiO_2$ 박막에 관한 연구)

  • Song, Sang-Woo;Kim, Sung-Su;Roh, Ji-Hyoung;Lee, Kyung-Ju;Moon, Byung-Moo;Kim, Hyun-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.424-424
    • /
    • 2008
  • Dye-sensitized Solar Cell (DSC) is a new type of solar cell by using photocatalytic properties of $TiO_2$. The electric potential distribution in DSCs has played a major role in the operation of such cells. Models based on a built-in electric field which sets the upper limit for the open circuit voltage(Voc) and/or the possibility of a Schottky barrier at the interface between the mesoporous wide band gap semiconductor and the transparent conducting substrate have been presented. $TiO_2$ thin films were deposited on the FTO substrate by Nd:YAG Pulsed Laser Deposition(PLD) at room temperature and post-deposition annealing at $500^{\circ}C$ in flowing $O_2$ atmosphere for 1 hour. The structural properties of $TiO_2$ thin films have investigated by X-ray diffraction(XRD) and atomic force microscope(AFM). Thickness of $TiO_2$ thin films were controlled deference deposition time and measurement by scanning electron microscope(SEM). Then we manufactured a DSC unit cells and I-V and efficiency were tested using solar simulator.

  • PDF

Impact of a Convectively Forced Gravity Wave Drag Parameterization in Global Data Assimilation and Prediction System (GDAPS) (대류가 유도하는 중력파 항력의 모수화가 GDAPS에 미치는 영향)

  • Kim, So-Young;Chun, Hye-Yeong;Park, Byoung-Kwon;Lee, Hae-Jin
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.303-318
    • /
    • 2006
  • A parameterization of gravity wave drag induced by cumulus convection (GWDC) proposed by Chun and Baik is implemented in the KMA operational global NWP model (GDAPS), and effects of the GWDC on the forecast for July 2005 by GDAPS are investigated. The forecast result is compared with NCEP final analyses data (FNL) and model's own analysis data. Cloud-top gravity wave stresses are concentrated in the tropical region, and the resultant forcing by the GWDC is strong in the tropical upper troposphere and lower stratosphere. Nevertheless, the effect of the GWDC is strong in the mid- to high latitudes of Southern Hemisphere and high latitudes of Northern Hemisphere. By examining the effect of the GWDC on the amplitude of the geopotential height perturbation with zonal wavenumbers 1-3, it is found that impact of the GWDC is extended to the high latitudes through the change of planetary wave activity, which is maximum in the winter hemisphere. The GWDC reduces the amplitude of zonal wavenumber 1 but increases wavenumber 2 in the winter hemisphere. This change alleviates model biases in the zonal wind not only in the lower stratosphere where the GWDC is imposed, but also in the whole troposphere, especially in the mid- to high latitudes of Southern Hemisphere. By examining root mean square error, it is found that the GWDC parameterization improves GDAPS forecast skill in the Southern Hemisphere before 7 days and partially in the Northern Hemisphere after about 5 days.

Comparison of Cloud Top Height Observed by a Ka-band Cloud Radar and COMS (Ka-band 구름레이더와 천리안위성으로 관측된 운정고도 비교)

  • Oh, Su-Bin;Won, Hye Young;Ha, Jong-Chul;Chung, Kwan-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • This study provides a comparative analysis of cloud top heights observed by a Ka-band cloud radar and the Communication, Ocean and Meteorological Satellite (COMS) at Boseong National Center for Intensive Observation of severe weather (NCIO) from May 25, 2013 (1600 UTC) to May 27. The rainfall duration is defined as the period of rainfall from start to finish, and the no rainfall duration is defined as the period other than the rainfall duration. As a result of the comparative analysis, the cloud top heights observed by the cloud radar have been estimated to be lower than that observed by the COMS for the rainfall duration due to the signal attenuation caused by raindrops. The stronger rainfall intensity gets, the more the difference grows. On the other hand, the cloud top heights observed by the cloud radar have been relatively similar to that observed by the COMS for the no rainfall duration. In this case, the cloud radar can effectively detect cloud top heights within the range of its observation. The COMS indicates the cloud top heights lower than the actual ones due to the upper thin clouds under the influence of ground surface temperature. As a result, the cloud radar can be useful in detecting cloud top heights when there are no precipitation events. The COMS data can be used to correct the cloud top heights when the radar gets beyond the valid range of observation or there are precipitation events.

A Study on Estimation of Inflow Wind Speeds in a CFD Model Domain for an Urban Area (도시 지역 대상의 CFD 모델 영역에서 유입류 풍속 추정에 관한 연구)

  • Kang, Geon;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In this study, we analyzed the characteristics of flow around the Daeyeon automatic weather station (AWS 942) and established formulas estimating inflow wind speeds at a computational fluid dynamics (CFD) model domain for the area around Pukyong national university using a computational fluid dynamics (CFD) model. Simulated wind directions at the AWS 942 were quite similar to those of inflows, but, simulated wind speeds at the AWS 942 decreased compared to inflow wind speeds except for the northerly case. The decrease in simulated wind speed at the AWS 942 resulted from the buildings around the AWS 942. In most cases, the AWS 942 was included within the wake region behind the buildings. Wind speeds at the inflow boundaries of the CFD model domain were estimated by comparing simulated wind speeds at the AWS 942 and inflow boundaries and systematically increasing inflow wind speeds from $1m\;s^{-1}$ to $17m\;s^{-1}$ with an increment of $2m\;s^{-1}$ at the reference height for 16 inflow directions. For each inflow direction, calculated wind speeds at the AWS 942 were fitted as the third order functions of the inflow wind speed by using the Marquardt-Levenberg least square method. Estimated inflow wind speeds by the established formulas were compared to wind speeds observed at 12 coastal AWSs near the AWS 942. The results showed that the estimated wind speeds fell within the inter quartile range of wind speeds observed at 12 coastal AWSs during the nighttime and were in close proximity to the upper whiskers during the daytime (12~15 h).

Determination and Predictability of Precipitation-type in Winter from a Ground-based Microwave Radiometric Profiler Radiometer (라디오미터를 이용한 겨울철 강수형태 결정 및 예측가능성 고찰)

  • Won, Hye Young;Kim, Yeon-Hee;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.229-238
    • /
    • 2010
  • The 1,000~500 hPa thickness and the $0^{\circ}C$ isotherm at 850 hPa have been used as the traditional predictors for wintertime precipitation-type forecasts. New approaches are taking on added significance as preexistence method of determination for wintertime precipitation-type exhibits more or less prevalent false alarms. Moreover thicknesses and thermodynamic profiles from ordinary upper-air observation were not adequate to monitor the atmospheric structure. In this regard, Microwave radiometric profiler microwave radiometer is useful in wintertime precipitation-type forecasts because radiometric measurements provide soundings at high temporal resolution. In this study, the determination and the predictability of wintertime precipitation-type were examined by using the calculated thicknesses, temperature of 850 hPa (T850) from a microwave radiometer, and surface observation at National Center for Intensive Observation of severe weather (NCIO) located at Haenam, Korea. The critical values for traditional predictors (thickness of 1000~500 hPa and T850) were evaluated and adjusted to Haenam region because snow rarely occurred with a 1000-500 hPa thickness > 5,300 m and T850 > $-10^{\circ}C$. Three thicknesses (e.g., 1,000~850, 1000~700, and 850~700 hPa thickness), T850, surface air temperature, and wet-bulb temperature were also evaluated as the additional predictors. A simple nomogram and a flow chart were finally designed to determine the wintertime precipitation-type using the microwave radiometer. The skill scores for the predictability of precipitation-type determination are considerably improved and the predictors showed the temporal variations in 12 hours before precipitation. We can monitor the hit and run snowfall in winter successful by realtime watch of the predictors, especially in commutes of big cities.

Structure of Mesoscale Heavy Precipitation Systems Originated from the Changma Front (장마전선 상에서 발생한 중규모 호우계 구조에 대한 연구)

  • Park, Chang-Geun;Lee, Tae-Young
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.317-338
    • /
    • 2008
  • Analyses of observational data and numerical simulations were performed to understand the mechanism of MCSs (Mesoscale Convective Systems) occurred on 13-14 July 2004 over Jindo area of the Korean Peninsula. Observations indicated that synoptic environment was favorable for the occurrence of heavy rainfall. This heavy rainfall appeared to have been enhanced by convergence around the Changma front and synoptic scale lifting. From the analyses of storm environment using Haenam upper-air observation data, it was confirmed that strong convective instability was present around the Jindo area. Instability indices such as K-index, SSI-index showed favorable condition for strong convection. In addition, warm advection in the lower troposphere and cold advection in the middle troposphere were detected from wind profiler data. The size of storm, that produced heavy rainfall over Jindo area, was smaller than $50{\times}50km^2$ according to radar observation. The storm developed more than 10 km in height, but high reflectivity (rain rate 30 mm/hr) was limited under 6 km. It can be judged that convection cells, which form cloud clusters, occurred on the inflow area of the Changma front. In numerical simulation, high CAPE (Convective Available Potential Energy) was found in the southwest of the Korean Peninsula. However, heavy rainfall was restricted to the Jindo area with high CIN (Convective INhibition) and high CAPE. From the observations of vertical drop size distribution from MRR (Micro Rain Radar) and the analyses of numerically simulated hydrometeors such as graupel etc., it can be inferred that melted graupels enhanced collision and coalescence process of heavy precipitation systems.

Interdecadal Changes in the Boreal Summer Tropical-Extratropical Teleconnections Occurred Around Mid-to-late 1990s (1990년대 중·후반을 전후한 북반구 여름철 열대-중위도 원격상관의 장기 변화)

  • Lee, June-Yi
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.325-336
    • /
    • 2018
  • This study investigates robust features of interdecadal changes in the Northern hemisphere summer tropical-extratropical teleconnection occurred around the mid-to-late 1990s by analyzing four different reanalysis data for atmospheric circulation and temperature, two precipitation reconstructions, and two sea surface temperature (SST) data during the satellite observation era of 1980~2017. For the last 38 years, there has been a significant increasing trend in anticyclonic circulation at lower and upper troposphere and 2 m air temperature with wavenumber-5 Rossby wave structure in the Northern Hemisphere (NH) extratropics. The increase has been accompanied with the significant weakening and northward shift of jet stream over Eurasia and the North Pacific. It is further found that there has been a significant interdecadal shift occurred around the mid-to-late 1990s in the two distinct modes of tropical-extratropical teleconnection: Western Pacific-North America (WPNA) and circumglobal teleconnection (CGT) pattern. After mid-to-late 1990s, the WPNA has played more important role in modulating the extratropical atmospheric circulation and surface climate, which has been preferentially occurred during the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) decaying or transition summer such as 1998, 2010 and 2016. During these summers, severe heat waves were occurred over many parts of the NH extratropics due to the combined effect of the increasing trend in the barotropic anticyclonic circulation and the significant WPNA across the NH. Although weakened, the CGT also contributed to some of hot summers over many parts of the NH extratropics such as 1999, 2000, 2008, 2011, and 2012 when weak to moderate La $Ni{\tilde{n}}o$ was persisted.

Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5) (기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가)

  • Lee, So-Jeong;Hyun, Yu-Kyung;Lee, Sang-Min;Hwang, Seung-On;Lee, Johan;Boo, Kyung-On
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.