Browse > Article
http://dx.doi.org/10.14191/Atmos.2014.24.1.039

Comparison of Cloud Top Height Observed by a Ka-band Cloud Radar and COMS  

Oh, Su-Bin (Forecast Research Laboratory, National Institute of Meteorological Research, KMA)
Won, Hye Young (Forecast Research Laboratory, National Institute of Meteorological Research, KMA)
Ha, Jong-Chul (Forecast Research Laboratory, National Institute of Meteorological Research, KMA)
Chung, Kwan-Young (Forecast Research Laboratory, National Institute of Meteorological Research, KMA)
Publication Information
Atmosphere / v.24, no.1, 2014 , pp. 39-48 More about this Journal
Abstract
This study provides a comparative analysis of cloud top heights observed by a Ka-band cloud radar and the Communication, Ocean and Meteorological Satellite (COMS) at Boseong National Center for Intensive Observation of severe weather (NCIO) from May 25, 2013 (1600 UTC) to May 27. The rainfall duration is defined as the period of rainfall from start to finish, and the no rainfall duration is defined as the period other than the rainfall duration. As a result of the comparative analysis, the cloud top heights observed by the cloud radar have been estimated to be lower than that observed by the COMS for the rainfall duration due to the signal attenuation caused by raindrops. The stronger rainfall intensity gets, the more the difference grows. On the other hand, the cloud top heights observed by the cloud radar have been relatively similar to that observed by the COMS for the no rainfall duration. In this case, the cloud radar can effectively detect cloud top heights within the range of its observation. The COMS indicates the cloud top heights lower than the actual ones due to the upper thin clouds under the influence of ground surface temperature. As a result, the cloud radar can be useful in detecting cloud top heights when there are no precipitation events. The COMS data can be used to correct the cloud top heights when the radar gets beyond the valid range of observation or there are precipitation events.
Keywords
Ka-band cloud radar; COMS; cloud top height;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bodas-Salcedo, A., M. J. Webb, M. E. Brooks, M. A. Ringer, K. D. Williams, S. F. Milton, and D. R. Wilson, 2008: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113, D00A13.
2 Gerard, L., J.-M. Piriou, R. Brozkova, and J.-F. Geleyn, 2009: Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Wea. Rev., 137, 3960-3977.   DOI   ScienceOn
3 Bouniol, D., and Coauthors, 2010: Using continuous ground-based radar and lidar measurements for evaluating the representation of clouds in four operational models. J. Appl. Meteor. Climatol., 49, 1971-1991.   DOI
4 Choi, Y.-S., C.-H. Ho, M.-H. Ahn, and Y.-M. Kim, 2007: An exploratory study of cloud remote sensing capabilities of the communication, ocean and meteorological satellite (COMS) imagery. Int. J. Remote Sens., 28, 4715-4732.   DOI   ScienceOn
5 Choi, Y.-S., and C.-H. Ho, 2009: Validation of the cloud property retrievals from the MTSAT-1R imagery using MODIS observations. Int. J. Remote Sens., 30, 5935-5958.   DOI   ScienceOn
6 Hobbs, P. V., N. T. Funk, R. R. Weiss, J. D. Locatelli, and K. R. Biswas, 1985: Evaluation of a 35 GHz radar for cloud physics research. J. Atmos. Oceanic Technol., 2, 35-48.   DOI
7 Hollars, S., Q. Fu, J. Comstock, and T. Ackerman, 2004: Comparison of cloud-top height retrievals from groundbased 35 GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site. Atmos. Res., 72, 169-186.   DOI   ScienceOn
8 Kalesse, H., and P. Kollias, 2013: Climatology of high cloud dynamics using profiling ARM Doppler radar observations. J. Climate, 26, 6340-6359.   DOI   ScienceOn
9 Kneifel, S., M. Maahn, G. Peters, and C. Simmer, 2011: Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar). Meteor. Atmos. Phys., 113, 75-87.   DOI
10 Kobayashi, F., T. Takano, and T. Takemura, 2011: Isolated cumulonimbus initiation observed by 95-GHz FMCW radar, X-band radar, and photogrammetry in the Kanto region, Japan. SOLA, 7, 125-128.   DOI
11 Kollias, P., G. G. Tselioudis, and B. A. Albrecht, 2007: Cloud climatology at the Southern Great Plains and the layer structure, drizzle, and atmospheric modes of continental stratus. J. Geophys. Res., 112, D09116.
12 Krofli, R. A., and R. D. Kelly, 1996: Meteorological research applications of MM-wave radar. Meteor. Atmos. Phys., 59, 105-121.   DOI   ScienceOn
13 METRI/KMA, 2009: Development of meteorological data processing system of communication, ocean and meteorological satellite. pp 846.
14 Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Ocean. Technol., 7, 464-479.   DOI
15 Lopez, P., 2002: Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes. Quart. J. Roy. Meteor. Soc., 128, 229-258.   DOI
16 Mace G. G., C. Jakob, and K. P. Moran, 1998: Validation of hydrometeor occurrence predicted by the ECMWF model using millimeter wave radar data. Geophys. Res. Lett., 25, 1645-1648.   DOI   ScienceOn
17 O'Connor, E. J., R. J. Hogan, and A. J. Illingworth, 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 14-27.   DOI   ScienceOn
18 Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 1201-1221.   DOI
19 Polkinghorne, R., and T. Vukicevic, 2011: Data assimilation of cloud-affected radiances in a cloud-resolving Model. Mon. Wea. Rev., 139, 755-773.   DOI   ScienceOn
20 Polkinghorne, R., and T. Vukicevic, and K. F. Evans, 2010: Validation of cloud-resolving model background data for cloud data assimilation. Mon. Wea. Rev., 138, 781-795.   DOI   ScienceOn
21 Syrett, W. J., B. A. Albrecht, and E. E. Clothiaux, 1996: Vertical cloud structure in a midlatitude cyclone from a 94-GHz radar. Mon. Wea. Rev., 123, 3393-3407.
22 Weisz, E., J. Li, W. P. Menzel, A. K. Heidinger, B. H. Kahn, and C. Y. Liu, 2007: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett., 34, L17811.   DOI   ScienceOn
23 Yoshida, Y., S. Asano, and K. Iwanami, 2006: Retrieval of microphysical properties of water, ice, and mixedphase cloud using a triple-wavelength radar and microwave radiometer. J. Meteor. Soc. Japan., 84, 1005-1031.   DOI
24 Zhong, L., L. Liu, M. Deng, and X. Zhou, 2012: Retrieving microphysical properties and air motion of cirrus clouds based on the Doppler moments method using cloud radar. Adv. Atmos. Sci., 29, 611-622.   DOI   ScienceOn
25 Jakob, C., R. Pincus, C. Hannay, and K.-M. Xu, 2004: Use of cloud radar observations for model evaluation: A probabilistic approach. J. Geophys. Res., 109, D03202.
26 Zhong, L., L. Liu, M. Deng, S. Feng, R. Ge, and Z. Zhang, 2011: A 35-GHz polarimetric Doppler radar and Its application for observing clouds associated with typhoon Nuri. Adv. Atmos. Sci., 28, 945-956.   DOI   ScienceOn
27 Ahlgrimm, M., and R. Forbes, 2013: Improving the representation of low clouds and drizzle in the ECMWF model based on ARM observations from the Azores. Mon. Wea. Rev., doi: http://dx.doi.org/10.1175/MWRD-13-00153.1.   DOI
28 Sakurai, N., K. Iwanami, T. Maesaka, S.-I. Suzuki, S. Shimizu, R. Misumi, D.-S. Kim, and M. Maki, 2012: Case study of misoscale convective echo behavior associated with cumulonimbus development observed by ka-band Doppler radar in the Kanto region, Japan. SOLA, 8, 107-110.   DOI