• Title/Summary/Keyword: Uplink

Search Result 584, Processing Time 0.033 seconds

Analysis of BER According to Spatial and Frequency Diversity Gain in Uplink SC-FDMA with SIMO Systems (상향링크 SIMO 시스템에서 공간 및 주파수 다이버시티 이득에 따른 SC-FDMA의 BER 성능 분석)

  • Lee, Jin-Hui;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.535-547
    • /
    • 2014
  • We investigate BER (Bit Error Ratio) performance according to the gain of spatial and frequency diversities in uplink SC-FDMA of SIMO (Single Input Multiple Output) systems. The main results of the analysis in this paper are as follows. First, we prove that performance of integrated system for considering spatial and frequency diversity combining in parallel is equivalent with the performance of sequential system for performing diversity combining in sequence. By signal modeling, it is demonstrated that the performances of both systems are the same when the frequency diversity combining technique of the sequential system is equal to diversity combining technique of the integrated system, and spatial diversity combining technique of the sequential system is performed as MRC in advance of frequency diversity combining. Secondly, it is found that effect on the BER performance is different according to the gain of spatial and frequency diversities, respectively. The frequency diversity gain increases by increasing the number of subcarrier. It might affect the performance improvement of high SNR(Signal to Noise Ratio) while it maintains gap between performances of ZF(Zero Forcing) and MMSE(Minimum Mean Square Error) in frequency diversity combining schemes. Also, spatial diversity gain increases as the number of receiving antennas increases. It means that it can reduce performance gap between ZF and MMSE in frequency diversity combining schemes by increasing the number of receiving antennas. In addition, it might affect the performance improvement of the whole SNR. Finally, through the analysis of performance according to the spatial diversity gain, the performance of ZF in frequency diversity combining is equal to the MMSE if the number of receiving antennas is 6 or more.

Performance of Uncompressed Audio Distribution System over Ethernet with a L1/L2 Hybrid Switching Scheme (L1/L2 혼합형 중계 방법을 적용한 이더넷 기반 비압축 오디오 분배 시스템의 성능 분석)

  • Nam, Wie-Jung;Yoon, Chong-Ho;Park, Pu-Sik;Jo, Nam-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.108-116
    • /
    • 2009
  • In this paper, we propose a Ethernet based audio distribution system with a new L1/L2 hybrid switching scheme, and evaluate its performance. The proposed scheme not only offers guaranteed low latency and jitter characteristics that are essentially required for the distribution of high-quality uncompressed audio traffic, and but also provide an efficient transmission of data traffic on the Ethernet environment. The audio distribution system with a proposed scheme consists of a master node and a number of relay nodes, and all nodes are mutually connected as a daisy-chain topology through up and downlinks. The master node generates an audio frame for each cycle of 125us, and the audio frame has 24 time slotted audio channels for carrying stereo 24 channels of 16-bit PCM sampled audio. On receiving the audio frame from its upstream node via the downlink, each intermediate node inserts its audio traffic to the reserved time slot for itself, then relays again to next node through its physical layer(L1) transmission - repeating. After reaching the end node, the audio frame is loopbacked through the uplink. On repeating through the uplink, each node makes a copy of audio slot that node has to receive, then play the audio. When the audio transmission is completed, each node works as a normal L2 switch, thus data frames are switched during the remaining period. For supporting this L1/L2 hybrid switching capability, we insert a glue logic for parsing and multiplexing audio and data frames at MII(Media Independent Interlace) between the physical and data link layers. The proposed scheme can provide a good delay performance and transmission efficiency than legacy Ethernet based audio distribution systems. For verifying the feasibility of the proposed L1/L2 hybrid switching scheme, we use OMNeT++ as a simulation tool with various parameters. From the simulation results, one can find that the proposed scheme can provides outstanding characteristics in terms of both jitter characteristic for audio traffic and transmission efficiency of data traffics.

Design and Performance Evaluation of Selective DFT Spreading Method for PAPR Reduction in Uplink OFDMA System (OFDMA 상향 링크 시스템에서 PAPR 저감을 위한 선택적 DFT Spreading 기법의 설계와 성능 평가)

  • Kim, Sang-Woo;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.248-256
    • /
    • 2007
  • In this paper, we propose a selective DFT spreading method to solve a high PAPR problem in uplink OFDMA system. A selective characteristic is added to the DFT spreading, so the DFT spreading method is mixed with SLM method. However, to minimize increment of computational complexity, differently with common SLM method, our proposed method uses only one DFT spreading block. After DFT, several copy branches are generated by multiplying with each different matrix. This matrix is obtained by linear transforming the each phase rotation in front of DFT block. And it has very lower computational complexity than one DFT process. For simulation, we suppose that the 512 point IFFT is used, the number of effective sub-carrier is 300, the number of allowed sub-carrier to each user's is 1/4 and 1/3 and QPSK modulation is used. From the simulation result, when the number of copy branch is 4, our proposed method has more than about 5.2 dB PAPR reduction effect. It is about 1.8 dB better than common DFT spreading method and 0.95 dB better than common SLM which uses 32 copy branches. And also, when the number of copy branch is 2, it is better than SLM using 32 copy branches. From the comparison, the proposed method has 91.79 % lower complexity than SLM using 32 copy branches in similar PAPR reduction performance. So, we can find a very good performance of our proposed method. Also, we can expect the similar performance when all number of sub-carrier is allocated to one user like the OFDM.

Study on CGM-LMS Hybrid Based Adaptive Beam Forming Algorithm for CDMA Uplink Channel (CDMA 상향채널용 CGM-LMS 접목 적응빔형성 알고리듬에 관한 연구)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.895-904
    • /
    • 2007
  • This paper proposes a robust sub-optimal smart antenna in Code Division Multiple Access (CDMA) basestation. It makes use of the property of the Least Mean Square (LMS) algorithm and the Conjugate Gradient Method (CGM) algorithm for beamforming processes. The weight update takes place at symbol level which follows the PN correlators of receiver module under the assumption that the post correlation desired signal power is far larger than the power of each of the interfering signals. The proposed algorithm is simple and has as low computational load as five times of the number of antenna elements(O(5N)) as a whole per each snapshot. The output Signal to Interference plus Noise Ratio (SINR) of the proposed smart antenna system when the weight vector reaches the steady state has been examined. It has been observed in computer simulations that proposed beamforming algorithm improves the SINR significantly compared to the single antenna case. The convergence property of the weight vector has also been investigated to show that the proposed hybrid algorithm performs better than CGM and LMS during the initial stage of the weight update iteration. The Bit Error Rate (BER) characteristics of the proposed array has also been shown as the processor input Signal to Noise Ratio (SNR) varies.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

Class Gated Dynamic Bandwidth Allocation Algorithm for supporting QoS in the EPON (EPON 시스템에서 효율적인 QoS 제공을 위한 Class Gated 동적 대역 할당 알고리즘)

  • Hwang Jun-Ho;Kim Hyo-Won;Yoo Myung-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.94-103
    • /
    • 2006
  • Ethernet passive optical network (EPON) has drawn many attention as a promising access network technology for FTTH because it can provide a high bandwidth with a low cost. Since the uplink bandwidth in the EPON system is shared by many users, it is necessary for an EPON system to have an efficient bandwidth allocation mechanism. To support QoS in EPON, the previous bandwidth allocation schemes employ strict priority queueing (SPQ). Since SPQ gives unlimited priority to higher service class, the QoS of lower service classes gets worse. In this paper, we propose Class Gated DBA (Dynamic Bandwidth Allocation) algorithm in which the bandwidth is requested / granted in a service class basis. To avoid the monopoly in bandwidth usage by higher classes the maximum bandwidth that is allocate to each service class is limited (fairness between services classes). In addition, to avoid the monopoly in bandwidth usage by some particular users, each ONU runs fairness bandwidth allocation algorithm within each service classes. Through computer simulations, it is verified that the proposed algorithm achieves a good level of QoS, and at the same time maintains a good level of fairness between both service classes and users.

Backhaul traffic reduction scheme in intra-aircraft wireless networks (항공기내 무선 네트워크에서 백홀 트래픽 감소 기법)

  • Cho, Moon-Je;Jung, Bang Chul;Park, Pangun;Chang, Woohyuk;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1704-1709
    • /
    • 2016
  • In this paper, we propose efficient uplink data transmission method in ultra dense wireless networks as in intra-aircraft, where large-scale APs and wireless sensors are deployed. In the ultra dense wireless networks, a performance degradation is inevitable due to the inter-AP interference. However, the performance degradation can be avoided if a scheduling algorithm can estimate the amount of interference caused by each wireless sensor and reflects it. SGIR (Signal-to-Generating Interference Ratio) based scheduling algorithms is a typical example. Unfortunately, the scheduling algorithms based on the interference caused by wireless sensors necessarily yield large scale exchange of information through backhaul which connects APs. Therefore, we, in this paper, propose a novel scheme which can dramatically reduce the amount of information which are exchanged through backhaul connection. Monte-Carlo simulation results show that the proposed scheme can reduce the amount of backhaul traffic by 27% without loss of data transmission rate.

A Design of Handoff-aware DiffServ Scheduler in TDD/CDMA Networks (TDD/CDMA망에서 핸드오프를 지원하는 DiffServ 스케줄러 설계)

  • Zang, Seog-Ku;Kim, Young-Han
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.493-502
    • /
    • 2007
  • In this paper, we propose a handoff-aware DiffServ scheduler which intends to guarantee various QoS requirements of multimedia services for mobile nodes in TDD/CDMA based wireless networks. TDD is widely used duplexing mechanism in wireless communications. Unlike FDD, TDD allows a node to symmetrically communicate with a base station by using a single frequency band, resulting in high utilization of wireless resources. DiffServ is regarded as a relatively simple QoS support mechanism and thus it is easy to be extended. This is because DiffServ is not a per-flow based mechanisms and it does not require any signaling protocol. However, previously proposed DiffServ schedulers for wired networks can not be deployed directly into wireless networks since they do not consider properties of wireless networks. As a solution to the problem, DSS(DiffServ Supporting Scheduler) was proposed. DSS uses uplink channel, which is originally used for a node to require a base station to transmit packets, to support QoS efficiently. However, QoS does not consider handoff so that it can not support QoS for moving nodes from one cell to the other cell. Therefor. the proposed handoff support QoS mechanism is necessary for TCC/CDMA networks. The proposed scheme allows a mobile node to achieve seamless service without QoS degradation even for the handoff duration.

Analytical Solution for Attitude Command Generation of Agile Spacecraft (고기동 인공위성의 해석적 자세명령생성 기법 연구)

  • Mok, Sung-Hoon;Bang, Hyochoong;Kim, Hee-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.639-651
    • /
    • 2018
  • An analytical solution to generate attitude command profile for agile spacecraft is proposed. In realistic environment, obtaining analytical minimum-time optimal solution is very difficult because of following constraints-: 1) actuator saturation, 2) flexible mode excitation, 3) uplink command bandwidth limit. For that reasons, this paper applies two simplifications, an eigen-axis rotation and a finite-jerk approximated profile, to derive the solution in an analytical manner. The resulting attitude profile can be used as a feedforward or reference input to on-board attitude controller, and it can enhance spacecraft agility. Equations of attitude command profile are derived in two general boundary conditions: rest-to-rest maneuver and spin-to-spin maneuver. Simulation results demonstrate that the initial and final boundary conditions, in terms of time, attitude, and angular velocities, are well satisfied with the proposed analytical solution. The derived attitude command generation algorithm may be used to minimize a number of parameters to be uploaded to spacecraft or to automate a sequence of attitude command generation on-board.

An Efficient Mobile Transaction Processing Scheme over Multiple Wireless Broadcast Channels (다중 무선 방송채널에서의 효과적인 모바일 트랜잭션 처리 기법)

  • Jeong, Ho-Ryun;Jung, Sung-Won;Park, Sung-Wook
    • Journal of KIISE:Databases
    • /
    • v.35 no.3
    • /
    • pp.257-271
    • /
    • 2008
  • Wireless broadcast environments has character that a number of mobile client can receive data streaming from central server no matter how they are so many. Because it is asymmetric bandwidth in that uplink and downlink bandwidth are different. This advantage helps wireless broadcast environments is used in many applications. These applications work almost read operation and need control concurrency using transaction unit. Previous concurrency control scheme in single channel is not adapted in multi channel environments because consistency of data are broken when a mobile client tunes in a broadcast cycle in a channel and then move into another channel and listen to different broadcast cycle with already accessed broadcast cycle. In this paper, we propose concurrency control for read-only mobile transactions in multiple wireless broadcast channel. First of all, we adapt index and data dedicated channel and propose LBCPC(Longest Broadcast Cycle Per Channel) as new unit of consistency. In index dedicated channel, it is repeatedly broadcasted data in same BCPC(Broadcast Cycle Per Channel) until LBCPC. And mobile transaction executes validation using control information every LBCPC. As a result, consistency of data is kept and average response time is shorter than one in single channel because waiting time for restart reduces. And as control information is broadcasted more frequently than in single channel, it is guaranteed currency about data accessed by transaction. Finally, according to the simulation result, we verify performance of our scheme in multi channel as comparing average response time with single channel.