• 제목/요약/키워드: Uplift

검색결과 466건 처리시간 0.023초

파이프 골조온실의 민말뚝과 주름말뚝의 인발저항력 (The Uplift Capacity of Plane and Corrugated Piles for Pipe Frame Greenhouse)

  • Yong Cheol Yoon;Won Myung Suh;Jae Hong Cho
    • 생물환경조절학회지
    • /
    • 제10권3호
    • /
    • pp.148-154
    • /
    • 2001
  • 본 연구에서는 1-2W형 플라스틱피복 파이프 온실의 내풍성을 증대시키기 위하여 형상 및 직경이 서로 다른 말뚝에 대하여 인발저항력을 검토하였다. 그 결과 민말뚝의 경우, 인발하중이 증가함에 따라 인발저항력은 증가하지만, 대부분의 경우 인발변위가 발생한 직후의 하중단계에서 극한인발저항력에 도달하였다. 그러나 주름말뚝의 경우는 인발변위가 발생한 이후에도 실험을 종료할 때까지 인발저항력의 증감이 반복되는 경향을 나타내었다. 그리고 기초의 형상, 직경 및 매입깊이에 따라 극한인발저항력은 다르지만, 본 실험의 경우 직경과 매입깊이에 관계없이 극한인발저항력은 주름말뚝이 민말뚝보다 약 2배 정도 크게 나타났다. 단위면적당 극한인발저항력은 매입깊이가 깊어질수록 증가하지만, 직경이 커지면 감소하였다. 실험 대상지역의 설계풍속(26.9m.s$^{-1}$)을 고려하면, 민말뚝은 매입깊이에 관계없이 기초의 인발저항력이 부족하였고, 주름말뚝의 경우은 대부분의 실험조건에서 충분한 것으로 나타났다.

  • PDF

한반도 남부 해안의 융기율 비교 (Comparison of Uplift Rate in the Southern Coast of the Korean Peninsula)

  • 이광률;박충선
    • 한국지형학회지
    • /
    • 제26권2호
    • /
    • pp.55-67
    • /
    • 2019
  • This study tries to reveal and compare uplift rates in the southern coast of the Korean Peninsula, based on absolute ages from coastal terrace on the coast. The uplift rate in the East Coast from previous study ranges from 0.258 to 0.357 m/ka with a median rate of 0.262 m/ka and shows an increase trend from north to south. Median uplift rate of 0.082 m/ka with minimum and maximum rates of 0.053 m/ka and 0.127 m/ka, respectively, is calculated in the South Coast from previous and this studies. The uplift rate in the West Coast from 3 absolute ages in this study is 0.082~0.112 m/ka with a median rate of 0.090 m/ka. Based on these uplift rates in the southern coast of the Korean Peninsula, it can be concluded that since MIS 5, the East Coast has experienced 3 to 4 times faster uplift rate than the West and South Coasts. However, this study suggests that more discussion on whether these uplift rates are long-term tectonic movement associated with tilted warping movement since the Tertiary or short-term tectonic movement associated with isostatic rebound due to sea level change since the Last Interglacial is needed.

Uplift Capacity of a Plate Anchor Considering Suction Effects

  • 서영교
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.1-6
    • /
    • 2008
  • Anchors have been commonly used to as foundation systems of the structures that require the uplift resistance. Recently anchors have been used in ocean sediment for mooring systems to stabilizeoffshore structures. In the saturated clayey soil however suction developed between the soil and andchor and affects the uplift capacity of anchor. To estimate the uplift capacity of the andchor accurately, the failure mechanisms of the andchor by the uplift force should also be correctly assumed. The uplift capacity is usually expressed in terms of breakout factors with respect to embedment ratio. In this paper, a two-dimensional plane strain numerical investigation into the vertical uplift capacity of a plate andchor in a clayey soil is described. The breakout factor against their corresponding values of embedment ratio was calculated and plotted along a single curve. The modes of failure mechanism at shallow and deep andchors are also presented.

고속카메라를 이용한 전차선 압상량 검측 시스템 개발 (Development of an Uplift Measurement System for Overhead Contact Wire using High Speed Camera)

  • 박영;조용현;이기원;김형준;김인철
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.864-869
    • /
    • 2009
  • The measurement of contact wire uplift in electric railways is one of the most important test parameters to accepting the maximum permitted speed of new electric vehicles and pantographs. The contact wire uplift can be measured over short periods when the pantograph passes monitoring stations. In this paper, a high-speed image measurement system and its image processing method are being developed to evaluate dynamic uplift of overhead contact wires caused by pantograph contact forces of Korea Tilting Train eXpress (TTX) and Korea Train eXpress (KTX). The image measurement system was implemented utilizing a high-speed CMOS (Complementary Metal Oxide Semiconductor) camera and gigabit ethernet LAN. Unlike previous systems, the uplift measurement system using high speed camera is installed on the side of the rail, making maintenance convenient. On-field verification of the uplift measurement system for overhead contact wire using high speed camera was conducted by measuring uplift of the TTX followed by operation speeds at the Honam conventional line and high-speed railway line. The proposed high-speed image measurement system to evaluate dynamic uplift of overhead contact wires shows promising on-field applications for high speed trains such as KTX and TTX.

Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor

  • Zhu, Hong-Hu;Mei, Guo-Xiong;Xu, Min;Liu, Yi;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • 제7권2호
    • /
    • pp.165-181
    • /
    • 2014
  • In the past decade, different types of underreamed ground anchors have been developed for substructures requiring uplift resistance. This article introduces a new type of umbrella-shaped anchor. The uplift behavior of this ground anchor in clay is studied through a series of laboratory and field uplift tests. The test results show that the umbrella-shaped anchor has higher uplift capacity than conventional anchors. The failure mode of the umbrella-shaped anchor in a large embedment depth can be characterized by an arc failure surface and the dimension of the plastic zone depends on the anchor diameter. The anchor diameter and embedment depth have significant influence on the uplift behavior. A finite element model is established to simulate the pullout of the ground anchor. A parametric study using this model is conducted to study the effects of the elastic modulus, cohesion, and friction angle of soils on the load-displacement relationship of the ground anchor. It is found that the larger the elastic modulus and the shear strength parameters, the higher the uplift capacity of the ground anchor. It is suggested that in engineering design, the soil with stiffer modulus and higher shear strength should be selected as the bearing stratum of this type of anchor.

Numerical modeling of uplift resistance of buried pipelines in sand, reinforced with geogrid and innovative grid-anchor system

  • Mahdi, Majid;Katebi, Hooshang
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.757-774
    • /
    • 2015
  • Reinforcing soils with the geosynthetics have been shown to be an effective method for improving the uplift capacity of granular soils. The pull-out resistance of the reinforcing elements is one of the most notable factors in increasing the uplift capacity. In this paper, a new reinforcing element including the elements (anchors) attached to the ordinary geogrid for increasing the pull-out resistance of the reinforcement, is used. Thus, the reinforcement consists of the geogrid and anchors with the cylindrical plastic elements attached to it, namely grid-anchors. A three-dimensional numerical study, employing the commercial finite difference software FLAC-3D, was performed to investigate the uplift capacity of the pipelines buried in sand reinforced with this system. The models were used to investigate the effect of the pipe diameter, burial depth, soil density, number of the reinforcement layers, width of the reinforcement layer, and the stiffness of geogrid and anchors on the uplift resistance of the sandy soils. The outcomes reveal that, due to a developed longer failure surface, inclusion of grid-anchor system in a soil deposit outstandingly increases the uplift capacity. Compared to the multilayer reinforcement, the single layer reinforcement was more effective in enhancing the uplift capacity. Moreover, the efficiency of the reinforcement layer inclusion for uplift resistance in loose sand is higher than dense sand. Besides, the efficiency of reinforcement layer inclusion for uplift resistance in lower embedment ratios is higher. In addition, by increasing the pipe diameter, the efficiency of the reinforcement layer inclusion will be lower. Results demonstrate that, for the pipes with an outer diameter of 50 mm, the grid-anchor system of reinforcing can increase the uplift capacity 2.18 times greater than that for an ordinary geogrid and 3.20 times greater than that for non-reinforced sand.

어스앵커의 인발저항력 - 온실의 내풍성에 관한 연구 - (Uplift Capacity of Earth Anchor in Sand - Study on the windproof characteristics of a Greenhouse -)

  • 윤용철;서원명;양영호
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.125-128
    • /
    • 2002
  • The uplift capacity and displacement of an earth anchor for improving the wind resistance of the 1-2W type plastic film pipe on greenhouse was tested using the steel circular vertical earth anchor with various diameters and embedded depths (L) in dry sand. The diameter (B) of the model anchor is 90mm, 120mm, 150mm, respectively. The model tests were performed embedded depth ratios (L/B) ranging from $1{\sim}3$ in loose density. In the case of diameter 90mm, as the uplift loading increased, the uplift capacity also increased until the loading was reached to ultimate uplift capacity. After that, the uplift capacity was continually increased or decreased until the experiment was finished. In general, the ultimate uplift capacity was different depending upon the anchor diameter and embedded depth ratios.

  • PDF

A review on uplift response of symmetrical anchor plates embedded in reinforced sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.187-194
    • /
    • 2013
  • The most soil anchor works have been concerned with the uplift problem on embedded in non-reinforced soils under pullout test. Symmetrical anchor plates are a foundation system that can be resisting tensile load with the support of around soil in which symmetrical anchor plate is embedded. Engineers and authors proved that the uplift response can be improved by grouping the symmetrical anchor plates, increasing the unit weight, embedment ratio and the size of symmetrical anchor plates. Innovation of geosynthetics in the field of geotechnical engineering as reinforcement materials found to be possible solution in symmetrical anchor plate responses. Unfortunately the importance of reinforcement in submergence has received very little attention by researchers. In this paper, provision of tensile reinforcement under embedded conditions has been studied through uplift experiments on symmetrical anchor plates by few researchers. From the test results it has been showed that the provision of geogrid reinforcement system enhances the uplift response substantially under uplift test although other results are such as increase the ultimate uplift response of symmetrical anchor plate embedded using geosynthetic and Grid Fixed Reinforced (GFR) and symmetrical anchor plate improvement is very dependent on geosynthetic layer length and increases significantly until the amount of beyond that further increase in the layer length does not show a significant contribution in the anchor response.

간척지 온실기초 나무말뚝의 인발저항력 예측을 위한 실내모형시험 결과 비교·분석 (Comparision Analysis of Model Test for Prediction of Uplift Resistance in the Reclaimed Land Greenhouse Foundation)

  • 송창섭;김명환;장웅희
    • 한국농공학회논문집
    • /
    • 제58권2호
    • /
    • pp.45-52
    • /
    • 2016
  • The object of this paper was to evaulate modified proposed design equation in model test result in order to estimate uplift-resistance of timber pile of reclaimed land greenhouse foundation. Uplift resistance result of model test was increased to according to increased of contact area. Uplift-resistance result of field test tend to lineary increased to according to increased of embedment depth and contact area. Results of field uplift-resistance was evaluate compare with modified proposed design equation results of model test and Effective stress method. As the Effective stress method tend to underestimate, modified proposed design equation results of model test tend to similar type. As the contact area increase, difference between field uplift-resistance results and modified proposed design equation results of model test was considered uplift-speed.

소형 압력 토조내에 타입된 말뚝의 인발 거동과 극한 인발 지지력 결정에 관한 연구 (Study on Pullout Behavior and Determination of Ultimate Uplift Capacity of Pile Driven in Small Pressured Chamber)

  • 최용규
    • 한국지반공학회지:지반
    • /
    • 제11권2호
    • /
    • pp.19-28
    • /
    • 1995
  • 소형 압력 토조(small pressure chamber)를 이용하여 포화된 사질토에 타입된 폐단 강관 말뚝의 인발거동 특성을 연구하였다. 소형 압력 토조 시험에서는 인발 하중이 인발변위와 함께 증가하다가 급작스러운 미끄러짐 변위가 발생되는 현상이 2-3회 반복되다가 완전 인발파괴에 이르게 되는데, 이때 첫번째 미끄러짐 변위가 발생하는 하중의 크기를 극한 인발 지지력으로 정의할 수 있다. 또한, 소형 압력 토조 시험에서는 미세한 시험 조건에 의해서도 극한 인발 지지력의 크기가 50% 이상의 오차를 나타낼 수도 있으므로 모형 지반을 형성할 때마다 인발 재하 시험에 의하여 극한 인발 지지력을 결정하여 사용하는 것이 좋을 것으로 판단되며, 이때 1차 인발 시험에 의해 교란된 지반의 상태는 모형 말뚝의 크기에 적합한 타격에너지를 가해주어 회복시킬 수 있다.

  • PDF