• Title/Summary/Keyword: Updating Scheme

Search Result 149, Processing Time 0.026 seconds

Provably secure attribute based signcryption with delegated computation and efficient key updating

  • Hong, Hanshu;Xia, Yunhao;Sun, Zhixin;Liu, Ximeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2646-2659
    • /
    • 2017
  • Equipped with the advantages of flexible access control and fine-grained authentication, attribute based signcryption is diffusely designed for security preservation in many scenarios. However, realizing efficient key evolution and reducing the calculation costs are two challenges which should be given full consideration in attribute based cryptosystem. In this paper, we present a key-policy attribute based signcryption scheme (KP-ABSC) with delegated computation and efficient key updating. In our scheme, an access structure is embedded into user's private key, while ciphertexts corresponds a target attribute set. Only the two are matched can a user decrypt and verify the ciphertexts. When the access privileges have to be altered or key exposure happens, the system will evolve into the next time slice to preserve the forward security. What's more, data receivers can delegate most of the de-signcryption task to data server, which can reduce the calculation on client's side. By performance analysis, our scheme is shown to be secure and more efficient, which makes it a promising method for data protection in data outsourcing systems.

Enabling Fine-grained Access Control with Efficient Attribute Revocation and Policy Updating in Smart Grid

  • Li, Hongwei;Liu, Dongxiao;Alharbi, Khalid;Zhang, Shenmin;Lin, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1404-1423
    • /
    • 2015
  • In smart grid, electricity consumption data may be handed over to a third party for various purposes. While government regulations and industry compliance prevent utility companies from improper or illegal sharing of their customers' electricity consumption data, there are some scenarios where it can be very useful. For example, it allows the consumers' data to be shared among various energy resources so the energy resources are able to analyze the data and adjust their operation to the actual power demand. However, it is crucial to protect sensitive electricity consumption data during the sharing process. In this paper, we propose a fine-grained access control scheme (FAC) with efficient attribute revocation and policy updating in smart grid. Specifically, by introducing the concept of Third-party Auditor (TPA), the proposed FAC achieves efficient attribute revocation. Also, we design an efficient policy updating algorithm by outsourcing the computational task to a cloud server. Moreover, we give security analysis and conduct experiments to demonstrate that the FAC is both secure and efficient compared with existing ABE-based approaches.

Self-Updating One-Time Password Mutual Authentication Protocol for Ad Hoc Network

  • Xu, Feng;Lv, Xin;Zhou, Qi;Liu, Xuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1817-1827
    • /
    • 2014
  • As a new type of wireless network, Ad hoc network does not depend on any pre-founded infrastructure, and it has no centralized control unit. The computation and transmission capability of each node are limited. In this paper, a self-updating one-time password mutual authentication protocol for Ad hoc network is proposed. The most significant feature is that a hash chain can update by itself smoothly and securely through capturing the secure bit of the tip. The updating process does not need any additional protocol or re-initialization process and can be continued indefinitely to give rise to an infinite length hash chain, that is, the times of authentication is unlimited without reconstructing a new hash chain. Besides, two random variable are added into the messages interacted during the mutual authentication, enabling the protocol to resist man-in-the-middle attack. Also, the user's identity information is introduced into the seed of hash chain, so the scheme achieves anonymity and traceability at the same time.

Algorithm for the Constrained Chebyshev Estimation in Linear Regression

  • Kim, Bu-yong
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • This article is concerned with the algorithm for the Chebyshev estimation with/without linear equality and/or inequality constraints. The algorithm employs a linear scaling transformation scheme to reduce the computational burden which is induced when the data set is quite large. The convergence of the proposed algorithm is proved. And the updating and orthogonal decomposition techniques are considered to improve the computational efficiency and numerical stability.

  • PDF

An Efficient Authentication Scheme for Downloading and Updating Applications in Smart Cards (스마트 카드 응용 프로그램의 다운로드와 갱신에 대한 효율적인 인증 기법)

  • 박용수;조유근
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.118-124
    • /
    • 2004
  • In this paper we propose a method for authenticating the application that is to be downloaded or updated in smart cards. Previous works have some drawbacks such as having a long verification delay or requiring a large amount of primary/secondary storage. We propose an efficient parameterized scheme by using the hash chain technique where the secondary storage requirement and verification delay of updating the application are O(k) and O(k+n/k), respectively. Moreover, both the first storage requirement and verification delay of downloading the application are O(1).

Crack identification based on Kriging surrogate model

  • Gao, Hai-Yang;Guo, Xing-Lin;Hu, Xiao-Fei
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.25-41
    • /
    • 2012
  • Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a scheme for crack identification based on a Kriging surrogate model is proposed. A modified rectangular grid (MRG) is introduced to move some sample points lying on the boundary into the internal design region, which will provide more useful information for the construction of Kriging model. The initial Kriging model is then constructed by samples of varying crack parameters (locations and sizes) and their corresponding modal frequencies. For identifying crack parameters, a robust stochastic particle swarm optimization (SPSO) algorithm is used to find the global optimal solution beyond the constructed Kriging model. To improve the accuracy of surrogate model, the finite element (FE) analysis soft ANSYS is employed to deal with the re-meshing problem during surrogate model updating. Specially, a simple method for crack number identification is proposed by finding the maximum probability factor. Finally, numerical simulations and experimental research are performed to assess the effectiveness and noise immunity of this proposed scheme.

Design and Implementation of MODA Allocation Scheme based on Analysis of Block Cleaning Cost (블록 클리닝 비용 분석에 기초한 MODA할당 정책 설계 및 구현)

  • Baek, Seung-Jae;Choi, Jong-Moo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.11
    • /
    • pp.599-609
    • /
    • 2007
  • Due to the restrictions of Flash memory such as overwrite limitation and write/erase operational unit differences, block cleaning is required in Flash memory based file systems and known as a key factor on the performance of file systems. In this paper, we identify three parameters, namely utilization, invalidity and uniformity, and analyze how the parameters affect the cost of block cleaning. The analysis show that as uniformity degrades, the cost of block cleaning increases drastically. To overcome this problem, we design a new modification-aware(MODA) page allocation scheme that strives to keep uniformity high by separating frequently-updating data from infrequently-updating data. Real implementation experiments conducted on an embedded system show that the MODA scheme can actually enhance uniformity of Flash memory, which consequently leads to reduce the cost of block cleaning with an average of 123%, compared to the traditional sequential allocation scheme that is used in YAFFS.

Concurrency Control for Updating a Large Spatial Object (큰 공간 객체의 변경을 위한 동시성 제어)

  • Seo Young Duk;Kim DongHyun;Hong Bong Hee
    • Journal of KIISE:Databases
    • /
    • v.32 no.1
    • /
    • pp.100-110
    • /
    • 2005
  • The update transactions to be executed in spatial databases usually have been known as interactive and long duration works. To improve the parallelism of concurrent updates, it needs multiple transactions concurrently update a large spatial object which has a spatial extensions larger than workspace of a client. However, under the existing locking protocols, it is not possible to concurrently update a large spatial object because of conflict of a write lock This paper proposes a partial locking scheme of enabling a transaction to set locks on parts of a big object. The partial locking scheme which is an exclusive locking scheme set by user, acquires locks for a part of the big object to restrict the unit of concurrency control to a partial object of a big object. The scheme gives benefits of improving the concurrency of un updating job for a large object because it makes the lock control granularity finer.

Bayesian structural damage detection of steel towers using measured modal parameters

  • Lam, Heung-Fai;Yang, Jiahua
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.935-956
    • /
    • 2015
  • Structural Health Monitoring (SHM) of steel towers has become a hot research topic. From the literature, it is impractical and impossible to develop a "general" method that can detect all kinds of damages for all types of structures. A practical method should make use of the characteristics of the type of structures and the kind of damages. This paper reports a feasibility study on the use of measured modal parameters for the detection of damaged braces of tower structures following the Bayesian probabilistic approach. A substructure-based structural model-updating scheme, which groups different parts of the target structure systematically and is specially designed for tower structures, is developed to identify the stiffness distributions of the target structure under the undamaged and possibly damaged conditions. By comparing the identified stiffness distributions, the damage locations and the corresponding damage extents can be detected. By following the Bayesian theory, the probability model of the uncertain parameters is derived. The most probable model of the steel tower can be obtained by maximizing the probability density function (PDF) of the model parameters. Experimental case studies were employed to verify the proposed method. The contributions of this paper are not only on the proposal of the substructure-based Bayesian model updating method but also on the verification of the proposed methodology through measured data from a scale model of transmission tower under laboratory conditions.

A Public Key Traitor Tracing Scheme with Key-update Method (개인키 업데이트가 가능한 공개키 기반 공모자 추적 암호 알고리즘)

  • Lee, Moon-Shik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.46-56
    • /
    • 2012
  • Traitor Tracing schemes are broadcast encryption systems where at least one of the traitors who were implicated in the construction of a pirate decoder can be traced. This traceability is required in various contents delivery system like satellite broadcast, DMB, pay-TV, DVD and so on. In this paper, we propose a public key traitor tracing scheme with key-update method. If the system manager can update a secret key which is stored in an authorized decode, it makes a pirate decoder useless by updating a secret key A pirate decoder which cannot update a secret key does not decrypt contents in next session or during tracing a traitor, this scheme has merits which will make a pirate decoder useless, therefore this scheme raises the security to a higher level.