• Title/Summary/Keyword: Updated Lagrangian method

Search Result 52, Processing Time 0.027 seconds

Strength Estimation of Composite Joints Based on Progressive Failure Analysis (점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF

Strength of UD-Fabric Hybrid Laminated Composite Joints Based on Progressive Failure Analysis (점진적 파손해석 기법을 이용한 일방향-평직 혼합 적층 복합재 체결부의 강도)

  • 신소영;안현수;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.17-21
    • /
    • 2002
  • A finite element method based on the two-dimensional progressive failure analysis is presented for characterizing the strength and failure of the unidirectional-fabric hybrid laminated composite joints under pin loading. The 8-node laminated shell element is incorporated in the updated Lagrangian formulation. Various failure criteria including the maximum stress, Tsai-Wu, Yamada-Sun, and combinations of them are used in conjunction with the complete unloading stiffness degradation method. For the verification, joint tests are conducted for the specimens with various geometries. Although there are some differences depending on the geometry, the finite element model using the Yamada-Sun or the combined Yamada-Sun and Tsai-Wu criterion predicts the failure strength best.

  • PDF

A Simple Finite Element Method to Determination of Deformed Shape and Load-Displacement Curve of Elastomers (방진고무 변형형상 및 하중-변위곡선 예측을 위한 단순 유한요소법)

  • Jeon, Man-Su;Mun, Ho-Geun;Kim, Seong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.217-222
    • /
    • 1997
  • A simple finite element approach to predicting deformed shape and load-deflection curve of elastomers is presented in this paper. The method is based on several simplifications in deformation pattern and material behavior. The conventional updated Lagrangian approach is employed together with material data obtained by a simple tension test. The presented approach is verified through comparison of predicted results with experimental ones and applied successfully to shape design of various elastomers for shock, vibration and noise control. The advantage of the presented approach lies in easiness, simplicity and accuracy enough for engineering application.

A study on the nonlinear analysis of spatial frame structures with nonlinear rotational spring elements (비선형 회전 스프링 요소를 갖는 공간 프레임의 구조의 비선형 해석에 관한 연구)

  • 이병채;박문식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.29-42
    • /
    • 1990
  • Three dimensional frame structures with such nonlinearities as large displacements, medium rotations, plastic hinges and local defects are efficiently analyzed by introducing the nonlinear rotational spring. Formulations are based on the incremental updated Lagrangian descriptions and the virtual work principle, Axial displacement and twisted angle in beam elements are interpolated linearly, while bending displacements are approximated by the Hermite polynomials. The modified are length method is used as a solution method. The moment-angle of rotation relationship obtained analytically or experimentally can be easily incorporated into the solution procedure. Several examples tested show that the present method can be used efficiently in analyzing nonlinear frame structures with plastic hinges or local defect.

  • PDF

Postbuckling Analysis of laminated composite-stringer stiffened-Curved panels Loaded in Local compression. (국부 압축력을 받는 스트링거 보강 복합적층 만곡 판넬의 좌굴후 거동해석)

  • 김조권
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, postbuckling behavior of laminated composite-stringer stiffened-curved panels loaded in local compression is analyzed using the finite element program developed. Postbuckling Analysis is performed in dividing the panel behavior into three basic parts. The eight node degenerated shell element is used in modelling both panel and stiffeners, and the updated Lagrangian description method based on the 2nd Piola-Kirchhoff stress tensor and the Green strain tensor is used for the nonlinear finite element formulation. The progressive failure analysis is adopted in order to grasp the failure characteristics. The postbuckling experiment of the laminated composite-stiffened-curved panel had been done to verify the finite element analysis. The buckling load and the postbuckling ultimate load are compared in parametric study.

  • PDF

Progressive Failure Analysis of UD-Fabric Hybrid Laminated Composite Joints Considering Material Nonlinearity (재료비선형을 고려한 일방향-평직 혼합 적층 복합재 체결부의 점진적 파손해석)

  • 최정석;신소영;안현수;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.79-82
    • /
    • 2002
  • A finite element method based on the two-dimensional progressive failure analysis considering material nonlinearity is presented for characterizing the strength and failure of the unidirectional-fabric hybrid laminated composite joints under pin loading. The 8-node laminated shell element is incorporated in the updated Lagrangian formulation. Failure criteria including the Maximum Stress and Tsai-Wu are used in conjunction with the complete unloading stiffness degradation method. For the verification, joint tests are conducted for the specimens with two different ply-number ratios of UD composite to fabric composite. Although there are some differences depending on ply-number ratios, the finite element model using the maximum stress criterion considering nonlinear material behavior predicts the failure strength best.

  • PDF

A Study on Nonlinear Analysis of Mooring Lines (계류삭의 비선형운동특성해석에 관한 연구)

  • Sang-Moo,Lee;Yong-Chul,Kim;Young-Whan,Kim;Seok-Won,Hong;Hun-Chol,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 1986
  • This paper investigates the static configurations and the dynamic behaviors of a single point mooring line. To obtain the static configuration and static tension distribution along the mooring line, including the effect of fluid nonlinear drag and the elasticity of the line, the Runge-Kutta fourth order numerical method was used. The relationship between the horizontal excursion and the horizontal restoring force component of the mooring line, which is very important to a mooring line design, and the effect of a subsurface buoy on the static configuration are presented. In nonlinear dynamic analysis including nonlinear fluid drag acting on the line and geometrical nonlinearity for large deflections, finite element method using updated Lagrangian was used to obtain the solution. In the case of upper end harmonic excitation of the mooring line, the dynamic motion and the tension were also presented.

  • PDF

A Relative Nodal Displacement Method for Element Nonlinear Analysis (상대 절점 변위를 이용한 비선형 유한 요소 해석법)

  • Kim Wan Goo;Bae Dae sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.534-539
    • /
    • 2005
  • Nodal displacements are referred to the initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian furmulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid for structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacement sand traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One open loop and one closed loop structure undergoing large deformations are analyzed to demonstrate the efficiency and validity of the proposed method.

A Relative for Finite Element Nonlinear Structural Analysis (상대절점좌표를 이용한 비선형 유한요소해석법)

  • Kang, Ki-Rang;Cho, Heui-Je;Bae, Dae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.788-791
    • /
    • 2005
  • Nodal displacements are referred to the Initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian formulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid fer structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacements and traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One closed loop structure undergoing large deformations is analyzed to demonstrate the efficiency and validity of the proposed method.

  • PDF

Influence of Couplings on the Buckling Behavior of Composite Laminates with a Delamination (층간분리로 인한 연계강성이 복합재 적층판의 좌굴거동에 미치는 영향)

  • 김효진;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.354-362
    • /
    • 1995
  • The finite element modeling is used to study the buckling and postbuckling behavior of composite laminates with an embedded delamination. Degenerated shell element and rigid beam element are utilized for the finite element modeling. In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piola-Kirchhoff stress tensor and the Green strain tensor is used. The buckling and postbuckling behavior of composite laminates with a delamination are investigated for various delamination sizes, stacking sequences, and boundary conditions. It is shown that the buckling load and postbuckling behavior of composite laminates depend on the buckling model which is determined by the delamination size, stacking sequence and boundary condition. Also, results show that introduction of couplings can reduce greatly the buckling load.