• 제목/요약/키워드: Up-cut milling

검색결과 26건 처리시간 0.023초

기계적인 가공방법에 의한 마이크로 렌즈 금형가공 (The Micro Lens Mold Processing in Mechanical Fabrication Method)

  • 정재엽;이동주;제태진;최두선;이응숙;홍성민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1885-1888
    • /
    • 2003
  • As high technology industries such as IT and display have developed, demand for application parts of micro lens and lens array has been extremely increasing. According to these trends, many researchers are studying on the fabrication technology for parts of the micro lens by a variety of methods such as MEMS, Lithography, LIGA and so on. In this paper, we have performed researches related to ultra precision micro lens, lens array mold and fabrication of Lenticular lens mold for three-dimensional display by using mechanical micro end-milling and fly-cutting fabrication method. Tools used in this research were a diamond tool of R 150$\mu\textrm{m}$. Cutting conditions set up feed rate, spindle revolution. depth of cut and dwell time as variables. And we analyzed surface quality variation of the processed products according to the cutting conditions, and then carried out experiments to search the optimum conditions. Through this research, we have confirmed that we can fabricate the ultra precision micro lens mold with surface roughness Ra=20nm and the holographic lens mold by using micro end-milling and fly-cutting fabrication method. Furthermore, we demonstrated problems happened in the fabrication of the micro lens and established the foundation of experimental study for formulating its improvement plan.

  • PDF

마이크로 엔드밀링에서 가공깊이에 따른 가공변질층의 특성 (The Characteristics of Damaged Layer According to Depth of Cut in Micro Endmilling)

  • 이종환;권동희;박진효;김병민;정융호;강명창;이성용;김정석
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.77-83
    • /
    • 2007
  • The study on damaged layer is necessary for machinability improvement in micro machining. The damaged layer in metal cutting is derived from plastic deformation and transformation of metal structure. The damaged layer affects micro mold life and micro machine parts. In this study, the damaged layer of micro machined surface of copper is evaluated according to various machining condition. The damaged layer structure and metallurgical characteristics are measured by optical microscope, and evaluated by cutting forces and surface roughness. The scale of this damaged layer depends on cutting process parameters and machining environments. By experimental results, depth of damaged layer was increased with increasing of cutting depth, also the damaged layer is less occurred in down-milling compared to up-milling during micro endmilling operation.

절삭중 밀링공구의 마멸과 음향방출의 관련성에 관한 연구 (A Study on the Wear of Milling Tool and Relativity of Acoustic Emission in Cutting Process)

  • 윤종학;김동성
    • 한국생산제조학회지
    • /
    • 제4권2호
    • /
    • pp.31-37
    • /
    • 1995
  • This study is focused on the prediction of appropriate tool life by clarifying the correlation between progressive tool wear and AE signal. when rcutting SM45C by End mill in machining center. First of all, end mill have a problem that position of sensor sticking because it is revolution tool, but I think that it can be bained specific character according to sticking Sensor in the Vise. Consequently, the following results have been obtained; 1. Each cutting speed of feed rate over 0.1mm had a tendency to increase linearly according to the RMSAE 2. The level of AE signal at the same cutting area was more sensitive to depth of cut tharn the variation of feed rate 3. In the range of cutting duringqr about 75minqr atqr cutting speed 27m/min flankqr wear turns up aboutqr 0.21mm, aboutqr 0.29mm in the caseqr of about 65minqr at 33/min, qr hereby RMSAE increased rapidly at 0.2mm flank wear, also AE-HIT and CUM-CNTS.

  • PDF

반복학습제어를 이용한 커터 런아웃 보상에 관한 연구 (A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control)

  • 황준;정의식;황덕철
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

코너부의 펜슬가공시 볼엔드밀의 공구변형 특성 (Characteristics of Tool Deflection of Ball-end Mill Cutter in Pencil Cutting of the Corner)

  • 왕덕현;윤경석
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.123-129
    • /
    • 1999
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable one for the machining of free-form surface. During the process, the pencil cutting operation can be adopted before finish cut to eliminate overload in uncut area caused by large diameter of ball-end mill. The ball-end mill cutter for the pencil cutting is easily deflected by cutting force due to the long and thin shape, and the tool deflection in pencil cutting is one of the main reason of the machining errors in a free-form surface. The purpose of this study is to find the characteristics of deflected cutter trajectory by constructing measurement system with eddy-current sensor. It was found that the severe reduction of corner radius produced the overcut during the plane cutting. Up cutting method induced the overcut both plane and slope cutting, but down cutting one induced the undercut. From the experiments, down cutting with upward cutting path can generate the small undercut surface.

  • PDF

전기방사법을 이용한 LiFePO4 양극 활물질의 합성 및 전기화학적 특성 (Synthesis and Electrochemical Properties of LiFePO4 Cathode Material obtained by Electrospinning Method)

  • 이승병;조승현;박선일;이완진;이윤성
    • 전기화학회지
    • /
    • 제11권4호
    • /
    • pp.268-272
    • /
    • 2008
  • 본 연구에서는 $LiFePO_4$의 입자크기를 조절함으로써 우수한 전극특성을 나타낼 수 있도록 최적의 입자크기($50{\sim}100\;nm$)를 가지는 $LiFePO_4$ 양극 활물질을 전기방사법을 이용하여 합성하였다. XRD 분석결과 FeP, $Fe_2P$ 등의 불순물이 존재하지 않는 Pnma의 공간군을 가지는 잘 발달된 사방정 구조의 $LiFePO_4$가 합성됨을 확인하였으며, SEM 분석을 통하여 시료의 입자형태 및 크기를 관찰하였다. $0.1\;mA/cm^2$의 전류밀도와 $2.8{\sim}4.0\;V$의 전위영역에서 충 방전 테스트 수행시 135 mAh/g의 초기 방전용량을 나타내었으며, 50 싸이클 후에도 99.9% 이상의 용량 보존율을 보이는 우수한 싸이클 특성을 나타내었다.