• Title/Summary/Keyword: Unsupervised-classification

Search Result 276, Processing Time 0.026 seconds

Bathymetric mapping in Dong-Sha Atoll using SPOT data

  • Huang, Shih-Jen;Wen, Yao-Chung
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.525-528
    • /
    • 2006
  • The remote sensing data can be used to calculate the water depth especially in the clear and shallow water area. In this study, the SPOT data was used for bathymetric mapping in Dong-Sha atoll, located in northern South China Sea. The in situ sea depth was collected by echo sounder as well. A global positioning system was employed to locate the accurate sampling points for sea depth. An empirical model between measurement sea depth and band digital count was determined and based on least squares regression analysis. Both non-classification and unsupervised classification were used in this study. The results show that the standard error is less than 0.9m for non-classification. Besides, the 10% error related to the measurement water depth can be satisfied for more than 85% in situ data points. Otherwise, the 10% relative error can reach more than 97%, 69%, and 51% data points at class 4, 5, and 6 respectively if supervised classification is applied. Meanwhile, we also find that the unsupervised classification can get more accuracy to estimate water depth with standard error less than 0.63, 0.93, and 0.68m at class 4, 5, and 6 respectively.

  • PDF

Improved Algorithm for Fully-automated Neural Spike Sorting based on Projection Pursuit and Gaussian Mixture Model

  • Kim, Kyung-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.705-713
    • /
    • 2006
  • For the analysis of multiunit extracellular neural signals as multiple spike trains, neural spike sorting is essential. Existing algorithms for the spike sorting have been unsatisfactory when the signal-to-noise ratio(SNR) is low, especially for implementation of fully-automated systems. We present a novel method that shows satisfactory performance even under low SNR, and compare its performance with a recent method based on principal component analysis(PCA) and fuzzy c-means(FCM) clustering algorithm. Our system consists of a spike detector that shows high performance under low SNR, a feature extractor that utilizes projection pursuit based on negentropy maximization, and an unsupervised classifier based on Gaussian mixture model. It is shown that the proposed feature extractor gives better performance compared to the PCA, and the proposed combination of spike detector, feature extraction, and unsupervised classification yields much better performance than the PCA-FCM, in that the realization of fully-automated unsupervised spike sorting becomes more feasible.

The Hyperspectral Image Classification with the Unsupervised SAM (무감독 SAM 기법을 이용한 하이퍼스펙트럴 영상 분류)

  • 김대성;김진곤;변영기;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.159-164
    • /
    • 2004
  • SAM(Spectral Angle Mapper) is the method using the similarly of the angle between pairs of signatures instead of the spectral distance(MDC, MLC etc.) for classification or clustering. In this paper, we applied unsupervised techniques(Unsupervised SAM and ISODATA) to the Hyperspectral Image(Hyperion) which has innumerable, narrow and contiguous spectral bands and Multispectral Image(ETM$\^$+/) for the clustering of signatures. The overall measured accuracies of the USAM and ISODATA of multispectral image were 76.52%, 53.91% and the USAM and ISODATA of hyperspectral image were 63.04%, 53.91%. From the results of our test, we report that the Unsupervised SAM is better classfication technique than ISODATA. Also we believe that the "Spectral Angle" can potentially be one of the most accurate classifier not only multispectral images but hyperspectral images.

  • PDF

Automatic Mosaicing of Airborne Multispectral Images using GPS/INS Data and Unsupervised Classification (GPS/INS자료와 무감독 분류를 이용한 항공영상 자동 모자이킹)

  • Jang, Jae-Dong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.46-55
    • /
    • 2006
  • The purpose of this study is a development of an automatic mosaicing for applying to large number of airborne multispectral images, which reduces manual operation by human. 2436 airborne multispectral images were acquired from DuncanTech MS4100 camera with three bands; green, red and near infrared. LIDAR(LIght Detection And Ranging) data and GPS/INS(global positioning system/inertial navigation system) data were collected with the multispectral images. First, the multispectral images were converted to image patterns by unsupervised classification. Their patterns were compared with those of adjacent images to derive relative spatial position between images. Relative spatial positions were derived for 80% of the whole images. Second, it accomplished an automatic mosaicing using GPS/INS data and unsupervised classification. Since the time of GPS/INS data did not synchronized the time of readout images, synchronized GPS/INS data with the time of readout image were selected in consecutive data by comparing unsupervised classified images. This method realized mosaicing automatically for 96% images and RMSE (root mean square error) for the spatial precision of mosaiced images was only 1.44 m by validation with LIDAR data.

  • PDF

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

Performance Evaluation of One Class Classification to detect anomalies of NIDS (NIDS의 비정상 행위 탐지를 위한 단일 클래스 분류성능 평가)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.15-21
    • /
    • 2018
  • In this study, we try to detect anomalies on the network intrusion detection system by learning only one class. We use KDD CUP 1999 dataset, an intrusion detection dataset, which is used to evaluate classification performance. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve relatively high classification efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data. In this study, we use one class classifiers based on support vector machines and density estimation to detect new unknown attacks. The test using the classifier based on density estimation has shown relatively better performance and has a detection rate of about 96% while maintaining a low FPR for the new attacks.

A Study on the Unsupervised Classification of Hyperion and ETM+ Data Using Spectral Angle and Unit Vector

  • Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • Unsupervised classification is an important area of research in image processing because supervised classification has the disadvantages such as long task-training time and high cost and low objectivity in training information. This paper focuses on unsupervised classification, which can extract ground object information with the minimum 'Spectral Angle Distance' operation on be behalf of 'Spectral Euclidian Distance' in the clustering process. Unlike previous studies, our algorithm uses the unit vector, not the spectral distance, to compute the cluster mean, and the Single-Pass algorithm automatically determines the seed points. Atmospheric correction for more accurate results was adapted on the Hyperion data and the results were analyzed. We applied the algorithm to the Hyperion and ETM+ data and compared the results with K-Means and the former USAM algorithm. From the result, USAM classified the water and dark forest area well and gave more accurate results than K-Means, so we believe that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but hyperspectral images. And also the unit vector can be an efficient technique for characterizing the Remote Sensing data.

  • PDF

Particulate Distribution Map of Tidal Flat using Unsupervised Classification of Multi-Temporary Satellite Data (다중시기 위성영상의 무감독분류에 의한 갯벌의 입자 분포도)

  • 정종철
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • This research presents particulate distribution map of tidal flats of Hampyung bay using reflectance which extracted from satellite data and field survey data during same periods. The spectrum of particulate composition obtained from Landsat TM data was analysed and 7 scenes of satellite image were classified with ISODATA and K-MEANS methods. The results of unsupervised classification were estimated with in-situ data. The classification accuracy of ISODATA and K-MAMS methods were 84.3% and 85.7%. For validation of classified results of multi-temporal satellite images, TM image of May 1999(reference data), which was classified with field survey data was compared with classified results of multi-temporary satellite data.

Unsupervised Image Classification Using Spatial Region Growing Segmentation and Hierarchical Clustering (공간지역확장과 계층집단연결 기법을 이용한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • This study propose a image processing system of unsupervised analysis. This system integrates low-level segmentation and high-level classification. The segmentation and classification are conducted respectively with and without spatial constraints on merging by a hierarchical clustering procedure. The clustering utilizes the local mutually closest neighbors and multi-window operation of a pyramid-like structure. The proposed system has been evaluated using simulated images and applied for the LANDSATETM+ image collected from Youngin-Nungpyung area on the Korean Peninsula.

Unsupervised segmentation of Multi -Source Remotely Sensed images using Binary Decision Trees and Canonical Transform

  • Mohammad, Rahmati;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.4-23
    • /
    • 2001
  • This paper proposes a new approach to unsupervised classification of remotely sensed images. Fusion of optic images (Landsat TM) and radar data (SAR) has beer used to increase the accuracy of classification. Number of clusters is estimated using generalized Dunns measure. Performance of the proposed method is best observed comparing the classified images with classified aerial images.

  • PDF