• 제목/요약/키워드: Unsupervised algorithm

검색결과 281건 처리시간 0.022초

클래스 정보를 이용한 PCA 기반의 특징 추출 (PCA-based Feature Extraction using Class Information)

  • 박명수;나진희;최진영
    • 한국지능시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.492-497
    • /
    • 2005
  • 영상 데이터와 같이 큰 차원을 가지는 입력 자료들을 분류하고자 할 경우, 입력 자료의 차원을 줄일 수 있는 특징을 추출하는 전처리 과정은 매우 중요하다. 특징 추출(feature extraction)을 위해 PCA, ICA, LDA, MLP 등의 다양한 기법들이 개발되었는데 이러한 기법들은 PCA, ICA와 같은 무감독 방식의 기법(unsupervised algorithm)과 LDA, MLP와 같은 감독 방식의 기법(supervised algorithm)으로 구분할 수 있다. 이 중에서, 감독 방식의 경우는 입력 정보와 함께 클래스 정보를 사용하기 때문에 데이터를 분류하기에 더 좋은 특징들을 뽑아낼 수 있다. 본 논문에서는 무감독 방식 기법인 PCA에 기반 하면서도 클래스 정보를 사용하여 자료 분류에 더욱 적합한 특징들을 추출할 수 있는 기법인 PCA-FX를 제안하였다. 제안한 기법에 의해 추출된 특징을 이용할 경우의 인식 성능을, Yale face database를 사용하여 다른 기법들의 성능과 비교하였다.

유전자 알고리즘을 사용한 구조적응 자기구성 지도의 최적화 (Optimization of Structure-Adaptive Self-Organizing Map Using Genetic Algorithm)

  • 김현돈;조성배
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.223-230
    • /
    • 2001
  • 자기구성 지도는 주어진 입력에 대해 올바른 출력 값이 제공되지 않는 비교사 방식으로 학습된다. 또한, 반응하는 순서나 위치를 통해 위상이 보존(topology preserving)되는 특성을 가지고 있어 많은 분야에 응용되고 있다. 그러나, 자기 구성지도는 학습이 되기 전에 위상을 미리 고정시켜야 하기 때문에 실제 문제에 적용하기 어렵다는 단점을 가지고 있다. 구조 적응형 자기구성 지도는 자기구성 지도의 고정된 구조 때문에 발생하는 문제를 해결하기 위해 지도의 구조를 학습 중에 적절하게 변경시킨다. 이때, 변화된 구조의 가중치를 어떻게 초기화시킬 것인가 하는 것이 또한 중요한 문제이다. 이 논문에서는 구조 적응형 자기구성 지도 모델에서 유전자 알고리즘을 이용하여 분화된 노드의 가중치를 결정하는 방법을 제안한다. 이 방법은 기존의 구조 적응형 자기구성 지도보다 다소 높은 인식률을 보였고, 숫자 별 인식률 편차를 줄일 수 있었다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.

  • PDF

구간평균 기법과 직선으로부터의 최대거리를 이용한 초분광영상의 무감독변화탐지 (Unsupervised Change Detection of Hyperspectral images Using Range Average and Maximum Distance Methods)

  • 김대성;김용일;편무욱
    • 한국측량학회지
    • /
    • 제29권1호
    • /
    • pp.71-80
    • /
    • 2011
  • 임계값 결정은 변화유무만을 판단하는 무감독변화탐지에 있어 매우 중요한 과정으로 인식되고 있다. 본 논문은 향후 수요 증가가 기대되는 원격탐사 데이터 중 하나인 초분광영상을 이용한 새로운 무감독변화탐지 기법을 제안하고 있다. 다중시기의 화소간 유사도 측정을 통해 도출된 결과값을 일정 간격으로 평균하여 그래프를 생성하고, 최대거리 기법을 적용하여 변화유무 정보를 추출하기 위한 임계값을 결정하였다. 참조자료를 취득할 수 있는 두 가지 의사영상을 통해 기대최대화 기법, 교점방법, Otsu 기법과 결과를 비교하여 성능을 평가하였으며, 이를 토대로 다중시기의 Hyperion 영상에 각 기법을 적용하여 변화탐지 결과를 확인하였다. 제안기법은 기존의 임계값 결정 기법과 비슷하거나 높은 정확도를 보였으며, 간단하게 적용할 수 있는 장점이 있어 향후 초분광영상을 이용한 무감독변화탐지에 효과적으로 사용될 수 있을 것으로 기대된다.

비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식 (Multiple Texture Image Recognition with Unsupervised Block-based Clustering)

  • 이우범;김욱현
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.327-336
    • /
    • 2002
  • 텍스쳐 분석은 표면, 물체, 모양, 깊이 인식 등의 많은 영상 이해 분야에서 활용되는 가장 중요한 인식 기술 중의 하나이다. 그러나 기존의 방법들은 다중 텍스쳐 영상에 내재된 텍스쳐 성분의 인식 정보를 활용할 수 없는 분할만을 목적으로 하고 있으며, 내재된 텍스쳐 인식을 기반으로 하는 비교사적인 방법에 관한 연구는 거의 이루어지고 있지 않은 실정이다. 따라서 본 논문에서는 텍스쳐 성분을 방향장(orientation-field) 특징 정보인 방향각과 방향강도로 정의하고 블록-기반 자기조직화 신경회로망에 의해서 비교사적으로 영상 내에 존재하는 텍스쳐 영역을 군화(clustering) 및 통합(merging) 처리에 의해서 식별한다. 또한 제안된 알고리즘의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 블록 기반의 불림(dilation) 및 윤곽 검출 과정을 통해서 영상에 내재하는 텍스쳐 영역을 분할함으로써 그 유효성을 보인다.

퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류 (Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제19권4호
    • /
    • pp.329-339
    • /
    • 2003
  • 본 연구에서는 무감독 영상분류를 위하여 특성이 다른 센서로 수집된 영상들에 대한 의사결정 수준의 영상 융합기법을 제안하였다. 제안된 기법은 공간 확장 분할에 근거한 무감독 계층군집 영상분류기법을 개개의 센서에서 수집된 영상에 독립적으로 적용한 후 그 결과로 생성되는 분할지역의 퍼지 클래스 벡터(fuzzy class vector)를 이용하여 각 센서의 분류 결과를 융합한다. 퍼지 클래스벡터는 분할지역이 각 클래스에 속할 확률을 표시하는 지시(indicator) 벡터로 간주되며 기대 최대화 (EM: Expected Maximization) 추정 법에 의해 관련 변수의 최대 우도 추정치가 반복적으로 계산되어진다. 본 연구에서는 같은 특성의 센서 혹은 밴드 별로 분할과 분류를 수행한 후 분할지역의 분류결과를 퍼지 클래스 벡터를 이용하여 합성하는 접근법을 사용하고 있으므로 일반적으로 다중센서의 영상의 분류기법에 사용하는 화소수준의 영상융합기법에서처럼 서로 다른 센서로부터 수집된 영상의 화소간의 공간적 일치에 대한 높은 정확도를 요구하지 않는다. 본 연구는 한반도 전라북도 북서지역에서 관측된 다중분광 SPOT 영상자료와 AIRSAR 영상자료에 적용한 결과 제안된 영상 융합기법에 의한 피복 분류는 확장 벡터의 접근법에 의한 영상 융합보다 서로 다른 센서로부터 얻어지는 정보를 더욱 적합하게 융합한다는 것을 보여주고 있다.

클러스터링을 이용한 급격한 장면 전환 검출 기법 (Abrupt Shot Change Detection using an Unsupervised Clustering of Multiple Features)

  • 이훈철;고윤호;윤병주;김성대;유상조
    • 대한전자공학회논문지SP
    • /
    • 제38권6호
    • /
    • pp.712-720
    • /
    • 2001
  • 본 논문에서는 클러스터링을 이용해서 급격한 장면 전환을 찾는 방법을 제안한다. 일반적으로 장면 전환검출 기법에서 많이 사용되는 특징들은 특별한 상황에서만 잘 적용된다는 단점이 있기 때문에 여러 종류의 특징을 동시에 고려하는 클러스터링 기반의 기법이 많이 사용되고 있다. 하지만 이 경우에는 클러스터의 초기 중심을 정하는 것이 중요한 문제가 된다. 본 논문에서는 k-평균 클러스터링에서의 초기 중심을 적응적으로 바꾸면서 장면 전환 존재 여부를 결정하도록 하였다. 실험 결과 초기 클러스터 중심이 고정된 경우에 비해서 더 좋은 결과를 얻었다.

  • PDF

자기공명영상의 비지도 분할을 위한 통계적 모델기반 적응적 방법 (A Statistically Model-Based Adaptive Technique to Unsupervised Segmentation of MR Images)

  • 김태우
    • 한국정보처리학회논문지
    • /
    • 제7권1호
    • /
    • pp.286-295
    • /
    • 2000
  • 본 논문은 MR 영상의 비지도 분할을 위하여 MDL원리를 이용한 통계적 모델기반의 적응적 방법을 제안한다. 이 방법에서 조직 영역을 MRF로 모델링함으로써 잡음에 대응하고, 창으로 정의되는 국소영역 내의 밝기값을 가우스 혼합으로 모델링함으로써 영상의 비균일성을 흡수한다. 분할 알고리즘은 ICM을 기반으로 하며 MAP를 근사적으로 추정하고, 모델 파라미터를 국소영역으로부터 구한다. 파라미터 추정과 분할을 위한 창의 크기는 MDL원리를 이용하여 영상으로부터 추정한다. 실험에서 제안한 방법이 특히 비균일성이 있는 MR영상의 분할에서 국소영역의 영상특성을 잘 반영하였으며, 기존의 방법보다 더 좋은 결과를 보여주었다.

  • PDF

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • 제14권5호
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

Unsupervised Single Moving Object Detection Based on Coarse-to-Fine Segmentation

  • Zhu, Xiaozhou;Song, Xin;Chen, Xiaoqian;Lu, Huimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2669-2688
    • /
    • 2016
  • An efficient and effective unsupervised single moving object detection framework is presented in this paper. Given the sparsely labelled trajectory points, we adopt a coarse-to-fine strategy to detect and segment the foreground from the background. The superpixel level coarse segmentation reduces the complexity of subsequent processing, and the pixel level refinement improves the segmentation accuracy. A distance measurement is devised in the coarse segmentation stage to measure the similarities between generated superpixels, which can then be used for clustering. Moreover, a Quadmap is introduced to facilitate the refinement in the fine segmentation stage. According to the experiments, our algorithm is effective and efficient, and favorable results can be achieved compared with state-of-the-art methods.

Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법 (Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image)

  • 최재완;김용일;유기윤
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF