• 제목/요약/키워드: Unsupervised algorithm

검색결과 281건 처리시간 0.024초

Opinion Bias Detection Based on Social Opinions for Twitter

  • Kwon, A-Rong;Lee, Kyung-Soon
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.538-547
    • /
    • 2013
  • In this paper, we propose a bias detection method that is based on personal and social opinions that express contrasting views on competing topics on Twitter. We used unsupervised polarity classification is conducted for learning social opinions on targets. The $tf{\cdot}idf$ algorithm is applied to extract targets to reflect sentiments and features of tweets. Our method addresses there being a lack of a sentiment lexicon when learning social opinions. To evaluate the effectiveness of our method, experiments were conducted on four issues using Twitter test collection. The proposed method achieved significant improvements over the baselines.

Lagged Cross-Correlation of Probability Density Functions and Application to Blind Equalization

  • Kim, Namyong;Kwon, Ki-Hyeon;You, Young-Hwan
    • Journal of Communications and Networks
    • /
    • 제14권5호
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, the lagged cross-correlation of two probability density functions constructed by kernel density estimation is proposed, and by maximizing the proposed function, adaptive filtering algorithms for supervised and unsupervised training are also introduced. From the results of simulation for blind equalization applications in multipath channels with impulsive and slowly varying direct current (DC) bias noise, it is observed that Gaussian kernel of the proposed algorithm cuts out the large errors due to impulsive noise, and the output affected by the DC bias noise can be effectively controlled by the lag ${\tau}$ intrinsically embedded in the proposed function.

SAR 영상에서 MRF기반 도로 검출 (Detection of Road Based on MRF in SAR Images)

  • 김순백;이상학;김두영
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.121-124
    • /
    • 2000
  • We propose an algorithm for almost unsupervised detection of linear structures, in particular, axes in road network and river, as seen in synthetics aperture radar (SAR) images. The first is local step and used to extract linear features from the speckle radar image, which are treated as road segment candidates. We present two local line detectors as well as a method for fusing Information from these detectors. The second is hybrid step, we Identify the real roads among the segment candidates by defining a Markov random field (MRF) on a set of segments, which introduces contextual knowledge about the shape of road objects.

  • PDF

규칙과 비감독 학습 기반 통계정보를 이용한 품사 태깅 시스템 (Part-of-Speech Tagging System Using Rules/Statistics Extracted by Unsupervised Learning)

  • 이동훈;강미영;황명진;권혁철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.445-447
    • /
    • 2005
  • 본 논문은 규칙 기반 방법과 통계 기반 방법을 동시에 사용함으로써 두 가지 방법의 장단점을 상호 보완한다. 한 문장에 대한 최적의 품사열은 HMM을 기반으로 Viterbi Algorithm을 사용하여 선택한다. 이때 파라미터 값은 규칙에 의한 가중치 값과 통계 정보를 사용한다. 최소한의 일반규칙을 사용하여 구축한 규칙의 적용에 따라 가중치 값을 구하며 규칙을 적용받지 못하는 경우는 비감독학습으로 추출한 통계정보에 기반을 둔 가중치 값을 이용하여 파라미터 값을 구한다. 이러한 기본 모델을 여러 회 반복하여 학습함으로써 최적의 통계기반 가중치를 구한다. 규칙과 비감독 학습으로 추출한 통계정보를 이용한 본 품사 태깅 시스템의 어절 기반 정확도는 $97.78\%$이다.

  • PDF

시계열자료의 계층분리기법을 이용한 하천유역의 홍수위 예측 (Flood Stage Forecasting using Class Segregation Method of Time Series Data)

  • 김성원
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.669-673
    • /
    • 2008
  • In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.

  • PDF

On-Board Satellite MSS Image Compression

  • Ghassemian, Hassan;Amidian, Asghar
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.645-647
    • /
    • 2003
  • In this work a new method for on-line scene segmentation is developed. In remote sensing a scene is represented by the pixel-oriented features. It is possible to reduce data redundancy by an unsupervised segment-feature extraction process, where the segment-features, rather than the pixelfeatures, are used for multispectral scene representation. The algorithm partitions the observation space into exhaustive set of disjoint segments. Then, pixels belonging to each segment are characterized by segment features. Illustrative examples are presented, and the performance of features is investigated. Results show an average compression more than 25, the classification performance is improved for all classes, and the CPU time required for classification is reduced by the same factor.

  • PDF

MRF를 이용한 레이더 영상에서 도로검출 (Detection of Road Features Using MRF in Radar Images)

  • 김순백;정래형;김두영
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.221-224
    • /
    • 2000
  • We propose an algorithm for almost unsupervised detection of linear structures, in particular, axes in road network and river, as seen in synthetics aperture radar (SAR) images. The first is local step and used to extract linear features from the speckle radar image, which are treated as road segment candidates. We present two local line detectors as well as a method for fusing information from these detectors. The second is global step, we identify the real roads among the segment candidates by defining a Markov random field (MRF) on a set of segments, which introduces contextual knowledge about the shape of road objects.

  • PDF

Change Detection in Land-Cover Pattern Using Region Growing Segmentation and Fuzzy Classification

  • Lee Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제21권1호
    • /
    • pp.83-89
    • /
    • 2005
  • This study utilized a spatial region growing segmentation and a classification using fuzzy membership vectors to detect the changes in the images observed at different dates. Consider two co-registered images of the same scene, and one image is supposed to have the class map of the scene at the observation time. The method performs the unsupervised segmentation and the fuzzy classification for the other image, and then detects the changes in the scene by examining the changes in the fuzzy membership vectors of the segmented regions in the classification procedure. The algorithm was evaluated with simulated images and then applied to a real scene of the Korean Peninsula using the KOMPSAT-l EOC images. In the expertments, the proposed method showed a great performance for detecting changes in land-cover.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제19권5호
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

Modeling of a Software Vulnerability Identification Method

  • Diako, Doffou jerome;N'Guessan, Behou Gerard;ACHIEPO, Odilon Yapo M
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.354-357
    • /
    • 2021
  • Software vulnerabilities are becoming more and more increasing, their role is to harm the computer systems of companies, governmental organizations and agencies. The main objective of this paper is to propose a method that will cluster future software vulnerabilities that may spread. This method is developed by combining the Multiple Correspondence Analysis (MCA), the Elbow procedure and the Kmeans Algorithm. A simulation was done on a dataset of 15713 observations. This simulation allowed us to identify families of future vulnerabilities. This model was evaluated using the silhouette index.