• Title/Summary/Keyword: Unstructured grids

Search Result 76, Processing Time 0.022 seconds

Viscous Flow Analysis around a Wind Turbine Blade with End Plate and Rake (풍력터빈 날개의 끝판과 레이크 효과에 대한 점성유동장 해석)

  • Kim, Ju-In;Kim, Wu-Joan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Turbulent flow analysis around a wind turbine blade was performed to evaluate the power performance of offshore wind turbine. Fluent package was utilized to solve the Reynolds-averaged Navier-Stokes equations in non-inertial rotating coordinates. The realizable k-$\varepsilon$ model was used for turbulence closure and the grid system combining structured and unstructured grids was generated. In the first, lift and drag forces of 2-D foil section were calculated and compared with existing experimental data for the validation. Then torque and thrust of the wind turbine blade having NACA 4-series sections were calculated with fixed pitch angle and rpm. Tip speed ratio was varied by changing wind speed. In the next, three kinds of end plate were attached at the tip of blade in order to increase the power of the wind turbine. Among them the end plate attached at the suction side of the blade was found to be most effective. Furthermore, performance analysis with tilt angle and rake was also performed.

Flow Analysis over Moving Circular Cylinder Near the Wall at Moderate Reynolds Number (낮은 레이놀즈 수에서 벽면에 근접하여 이동하는 실린더 주위의 유동해석)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1091-1096
    • /
    • 2012
  • The aerodynamic characteristics of circular cylinder in a channel are studied to make clear the flow feature by solving the Navier-Stokes equation based on the finite volume method with unstructured grids. Reviews are made on with the vorticity, velocity, dynamic pressure, residual and drag, where the Reynolds numbers are 50 and 100. The flows for $Re{\succeq}50$ shows the vortex shedding in the wake, and the result is the same as the case of moving cylinder. The ground effect of flat bottom results in the growth of vortex, being generated in the upper side of the cylinder and elongated in the rear. As the cylinder approaches to wall, for example 0.6, the cylinder plays as a role of blockage to obstruct the flow between the cylinder and wall. The drag coefficients are compared with others' results to confirm the validity of the present numerical simulation.

Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure

  • Wang, Wenquan;Zhang, Li-Xiang;Yan, Yan;Guo, Yakun
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.361-379
    • /
    • 2012
  • This paper presents a fully coupled three-dimensional solver for the analysis of interaction between pulsatile flow and large deformation structure. A partitioned time marching algorithm is employed for the solution of the time dependent coupled discretised problem, enabling the use of highly developed, robust and well-tested solvers for each field. Conservative transfer of information at the fluid-structure interface is combined with an effective multi-predict-correct iterative scheme to enable implicit coupling of the interacting fields at each time increment. The three-dimensional unsteady incompressible fluid is solved using a powerful implicit time stepping technique and an ALE formulation for moving boundaries with second-order time accurate is used. A full spectrum of total variational diminishing (TVD) schemes in unstructured grids is allowed implementation for the advection terms and finite element shape functions are used to evaluate the solution and its variation within mesh elements. A finite element dynamic analysis of the highly deformable structure is carried out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton-Raphson second-order optimisation method. The proposed model is used to predict the wave flow fields of a particular flow-induced vibrational phenomenon, and comparison of the numerical results with available experimental data validates the methodology and assesses its accuracy. Another test case about three-dimensional biomedical model with pulsatile inflow is presented to benchmark the algorithm and to demonstrate the potential applications of this method.

Effects of Geometric Parameters of a Bobsleigh on Aerodynamic Performance (봅슬레이의 형상변화가 공력성능에 미치는 영향)

  • Shim, Hyeon-Seok;Jung, Hyo-Yeon;Kim, Jun-Hee;Kim, Kwang-Yong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.233-240
    • /
    • 2015
  • Analysis of the aerodynamic performance of a bobsleigh has been performed for various types of bobsleigh body shape. To analyze the aerodynamic performance of the bobsleigh, three-dimensional Reynolds-averaged Navier-Stoke equations were used with the standard k-${\varepsilon}$ model as a turbulence closure. Grid structure was composed of unstructured tetrahedral grids. The radii of curvature of cowling, and height and length of front bumper at the tip on the drag coefficient were selected as geometric parameters. And, the effects of these parameters on the aerodynamic performance, i.e., the drag coefficient, were evaluated. The results shows that the aerodynamic performance is significantly affected by the height of front bumper and radius of curvature.

Calculation of overtopping discharge with time-dependent aspects of an embankment failure (시간에 따른 제방붕괴 양상을 고려한 월류량 산정)

  • Kim, Hyung-Jun;Kim, Jong-Ho;Jang, Won-Jae;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, a time-dependent aspect of an embankment failure is considered to simulate a flood inundation map and calculate overtopping discharge induced by an embankment failure. A numerical model has been developed by solving the two dimensional nonlinear shallow water equations with a finite volume method on unstructured grids. To analyze a Riemann problem, the HLLC approximate Riemann solver and the Weighted Averaged Flux method are employed by using a TVD limiter and the source term treatment is also employed by using the operator splitting method. Firstly, the numerical model is applied to a dam break problem and a sloping seawall. Obtained numerical results show good agreements with experimental data. Secondly, the model is applied to a flow induced by an embankment failure by assuming that the width and elevation of embankment are varied with time-dependent functions. As a result of the comparison with each numerical overtopping discharge, established flood inundation discharges in the previous studies are overestimated than the result of the present numerical model.

An Application of the Multi-slope MUSCL to the Shallow Water Equations (천수방정식에 대한 다중 경사 MUSCL의 적용)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.819-830
    • /
    • 2011
  • The multi-slope MUSCL, proposed by T. Buffard and S. Clain, determines slopes of conserved variables at each edge of a cell in the linear reconstructions of data. In this study, the second order accurate numerical model was developed according to the multi-slope MUSCL to solve the shallow water equations on the unstructured grids. The HLLL scheme of approximate Riemann solvers was used to calculate fluxes. For the review of the applicability of the developed model, the results of the model were compared to the 'isolated building test' and the 'model city flooding experiment' conducted as part of the IMPACT (Investigation of extreMe flood Processes And unCerTainty) project in Europe. There were limitations to predict abrupt rising of water depths by the resistance of model buildings and water depths at the specific locations among the buildings. But they were identified as the same problems also revealed in results of the other models to the same experiment. On the more refined meshes to the 'model city flooding experiment' simulated results showed good agreement with measurements. It was verified that the developed model simulated well the complex phenomena such as a dam-break problem and the urban inundation by flash floods.