• Title/Summary/Keyword: Unstructured data analysis

Search Result 428, Processing Time 0.022 seconds

A Method of Predicting Service Time Based on Voice of Customer Data (고객의 소리(VOC) 데이터를 활용한 서비스 처리 시간 예측방법)

  • Kim, Jeonghun;Kwon, Ohbyung
    • Journal of Information Technology Services
    • /
    • v.15 no.1
    • /
    • pp.197-210
    • /
    • 2016
  • With the advent of text analytics, VOC (Voice of Customer) data become an important resource which provides the managers and marketing practitioners with consumer's veiled opinion and requirements. In other words, making relevant use of VOC data potentially improves the customer responsiveness and satisfaction, each of which eventually improves business performance. However, unstructured data set such as customers' complaints in VOC data have seldom used in marketing practices such as predicting service time as an index of service quality. Because the VOC data which contains unstructured data is too complicated form. Also that needs convert unstructured data from structure data which difficult process. Hence, this study aims to propose a prediction model to improve the estimation accuracy of the level of customer satisfaction by combining unstructured from textmining with structured data features in VOC. Also the relationship between the unstructured, structured data and service processing time through the regression analysis. Text mining techniques, sentiment analysis, keyword extraction, classification algorithms, decision tree and multiple regression are considered and compared. For the experiment, we used actual VOC data in a company.

Unstructured Data Analysis and Multi-pattern Storage Technique for Traffic Information Inference (교통정보 추론을 위한 비정형데이터 분석과 다중패턴저장 기법)

  • Kim, Yonghoon;Kim, Booil;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.211-223
    • /
    • 2018
  • To understand the meaning of data is a common goal of research on unstructured data. Among these unstructured data, there are difficulties in analyzing the meaning of unstructured data related to corpus and sentences. In the existing researches, the researchers used LSA to select sentences with the most similar meaning to specific words of the sentences. However, it is problematic to examine many sentences continuously. In order to solve unstructured data classification problem, several search sites are available to classify the frequency of words and to serve to users. In this paper, we propose a method of classifying documents by using the frequency of similar words, and the frequency of non-relevant words to be applied as weights, and storing them in terms of a multi-pattern storage. We use Tensorflow's Softmax to the nearby sentences for machine learning, and utilize it for unstructured data analysis and the inference of traffic information.

Interpretation and Prediction of Situations on the Korean Peninsula by Peace Index Analysis from Unstructured Data (비정형자료로부터의 평화지수 분석을 통한 한반도 정세 파악 방법)

  • Kwon, Ohbyung;Park, Dasol;Choi, Jihye;Lee, Jaeyoon
    • Journal of Information Technology Services
    • /
    • v.12 no.4
    • /
    • pp.423-434
    • /
    • 2013
  • Since acquiring intelligence about political situations around the Korea Peninsular in a direct manner is nearly impossible, it is inevitable for the individuals or companies to rely on open and indirect data such as newspapers. However, since the contents in the newspapers are substantially unstructured and very large, conventional content analysis is time-consuming and hence very costly. Hence, this paper aims to propose a sentimental analysis method which computes daily 'peace index' from unstructured data in the newspapers. From the content analysis, words and phrases which represent the sentiment of a nation are carefully identified. To show the feasibility of the idea proposed in this paper, a prototype system with vocabulary repository about political situations was developed for estimating peace index automatically.

Unstructured Data Analysis using Equipment Check Ledger: A Case Study in Telecom Domain (장비점검 일지의 비정형 데이터분석을 통한 고장 대응 효율화 사례 연구)

  • Ju, Yeonjin;Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.127-135
    • /
    • 2020
  • As the importance of the use and analysis of big data is emerging, there is a growing interest in natural language processing techniques for unstructured data such as news articles and comments. Particularly, as the collection of big data becomes possible, data mining techniques capable of pre-processing and analyzing data are emerging. In this case study with a telecom company, we propose a methodology how to formalize unstructured data using text mining. The domain is determined as equipment failure and the data is about 2.2 million equipment check ledger data. Data on equipment failures by 800,000 per year is accumulated in the equipment check ledger. The equipment check ledger coexist with both formal and unstructured data. Although formal data can be easily used for analysis, unstructured data is difficult to be used immediately for analysis. However, in unstructured data, there is a high possibility that important information. Because it can be contained that is not written in a formal. Therefore, in this study, we study to develop digital transformation method for unstructured data in equipment check ledger.

Standardizing Unstructured Big Data and Visual Interpretation using MapReduce and Correspondence Analysis (맵리듀스와 대응분석을 활용한 비정형 빅 데이터의 정형화와 시각적 해석)

  • Choi, Joseph;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.169-183
    • /
    • 2014
  • Massive and various types of data recorded everywhere are called big data. Therefore, it is important to analyze big data and to nd valuable information. Besides, to standardize unstructured big data is important for the application of statistical methods. In this paper, we will show how to standardize unstructured big data using MapReduce which is a distribution processing system. We also apply simple correspondence analysis and multiple correspondence analysis to nd the relationship and characteristic of direct relationship words for Samsung Electronics and The Korea Economic Daily newspaper as well as Apple Inc.

Analysis of Structured and Unstructured Data and Construction of Criminal Profiling System using LSA (LSA를 이용한 정형·비정형데이터 분석과 범죄 프로파일링 시스템 구현)

  • Kim, Yonghoon;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.66-73
    • /
    • 2017
  • Due to the recent rapid changes in society and wide spread of information devices, diverse digital information is utilized in a variety of economic and social analysis. Information related to the crime statistics by type of crime has been used as a major factor in crime. However, statistical analysis using only the structured data has the difficulty in the investigation by providing limited information to investigators and users. In this paper, structured data and unstructured data are analyzed by applying Korean Natural Language Processing (Ko-NLP) and the Latent Semantic Analysis (LSA) technique. It will provide a crime profile optimum system that can be applied to the crime profiling system or statistical analysis.

Cost Performance Evaluation Framework through Analysis of Unstructured Construction Supervision Documents using Binomial Logistic Regression (비정형 공사감리문서 정보와 이항 로지스틱 회귀분석을 이용한 건축 현장 비용성과 평가 프레임워크 개발)

  • Kim, Chang-Won;Song, Taegeun;Lee, Kiseok;Yoo, Wi Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.121-131
    • /
    • 2024
  • This research explores the potential of leveraging unstructured data from construction supervision documents, which contain detailed inspection insights from independent third-party monitors of building construction processes. With the evolution of analytical methodologies, such unstructured data has been recognized as a valuable source of information, offering diverse insights. The study introduces a framework designed to assess cost performance by applying advanced analytical methods to the unstructured data found in final construction supervision reports. Specifically, key phrases were identified using text mining and social network analysis techniques, and these phrases were then analyzed through binomial logistic regression to assess cost performance. The study found that predictions of cost performance based on unstructured data from supervision documents achieved an accuracy rate of approximately 73%. The findings of this research are anticipated to serve as a foundational resource for analyzing various forms of unstructured data generated within the construction sector in future projects.

Text Mining and Visualization of Unstructured Data Using Big Data Analytical Tool R (빅데이터 분석 도구 R을 이용한 비정형 데이터 텍스트 마이닝과 시각화)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1199-1205
    • /
    • 2021
  • In the era of big data, not only structured data well organized in databases, but also the Internet, social network services, it is very important to effectively analyze unstructured big data such as web documents, e-mails, and social data generated in real time in mobile environment. Big data analysis is the process of creating new value by discovering meaningful new correlations, patterns, and trends in big data stored in data storage. We intend to summarize and visualize the analysis results through frequency analysis of unstructured article data using R language, a big data analysis tool. The data used in this study was analyzed for total 104 papers in the Mon-May 2021 among the journals of the Korea Institute of Information and Communication Engineering. In the final analysis results, the most frequently mentioned keyword was "Data", which ranked first 1,538 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

Unstructured Data Quantification Scheme Based on Text Mining for User Feedback Extraction (사용자 의견 추출을 위한 텍스트 마이닝 기반 비정형 데이터 정량화 방안)

  • Jo, Jung-Heum;Chung, Yong-Taek;Choi, Seong-Wook;Ok, Changsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.131-137
    • /
    • 2018
  • People write reviews of numerous products or services on the Internet, in their blogs or community bulletin boards. These unstructured data contain important emotions and opinions about the author's product or service, which can provide important information for future product design or marketing. However, this text-based information cannot be evaluated quantitatively, and thus they are difficult to apply to mathematical models or optimization problems for product design and improvement. Therefore, this study proposes a method to quantitatively extract user's opinion or preference about a specific product or service by utilizing a lot of text-based information existing on the Internet or online. The extracted unstructured text information is decomposed into basic unit words, and positive rate is evaluated by using existing emotional dictionaries and additional lists proposed in this study. This can be a way to effectively utilize unstructured text data, which is being generated and stored in vast quantities, in product or service design. Finally, to verify the effectiveness of the proposed method, a case study was conducted using movie review data retrieved from a portal website. By comparing the positive rates calculated by the proposed framework with user ratings for movies, a guideline on text mining based evaluation of unstructured data is provided.

An Efficient Design and Implementation of an MdbULPS in a Cloud-Computing Environment

  • Kim, Myoungjin;Cui, Yun;Lee, Hanku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3182-3202
    • /
    • 2015
  • Flexibly expanding the storage capacity required to process a large amount of rapidly increasing unstructured log data is difficult in a conventional computing environment. In addition, implementing a log processing system providing features that categorize and analyze unstructured log data is extremely difficult. To overcome such limitations, we propose and design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, categorizing, and analyzing log data generated from banks. The proposed system includes a Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating replicas of collected log data in block units, the proposed system offers automatic system recovery against system failures and data loss. Finally, by establishing a distributed database using the NoSQL-based MongoDB, the proposed system provides methods of effectively processing unstructured log data. To evaluate the proposed system, we conducted three different performance tests on a local test bed including twelve nodes: comparing our system with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the chunk size option. From the experiments, we found that our system showed better performance in processing unstructured log data.