• Title/Summary/Keyword: Unstructured Overset Mesh

Search Result 29, Processing Time 0.028 seconds

An Unstructured 3-D Chimera Technique for Overlapped Bodies inRelative Motion (3차원 비정렬 중첩격자계를 이용한 서로 겹쳐진 물체들 간의 상대운동 해석기법에 관한 연구)

  • 안상준;권오준;정문승
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.1-7
    • /
    • 2006
  • In the present study, A 3-D chimera technique for overlapped bodies in relative motion is studied using unstructured meshes. If all node points of a mesh element at solid boundary are in another body, this element is excluded from computational domain. For computation of unsteady flow, non-active cells have proper variables using interpolation and extrapolation. These variables are used in next time step. The motion of a launching trajectory ejected from a wing and the motion of deploying fins of a trajectory which have not been simulated are computed to conform practicality of this technique.

Numerical Study of Rotor-Tower Interaction for Horizontal Axis Wind Turbine (수평축 풍력터빈의 로터-타워 공력 간섭현상에 대한 수치적 연구)

  • Kim, Jae-Won;Yu, Dong-Ok;Kwon, Oh-Joon
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • In the present study, numerical unsteady simulations of the NREL Phase VI wind turbine in downwind operation conditions were conducted to investigate rotor-tower interaction. The calculations were performed using an unstructured mesh, incompressible Reynolds-averaged Navier-Stokes flow solver. To capture the unsteady effects associated with the tower shadow between the rotor blades and the tower, the wind turbine was modelled including the rotor, tower, hub, and nacelle. The present results generally showed good agreements with available experimental data. At the lowest wind speed, the pressure distribution was characterized by a complete collapse of the suction peak on the blade when the blade passes through the tower wake. It was found that unsteady effects play a significant role in the response of the blades.

A Computational Study About Behavior of an Underwater Projectile and Prediction of Surficial Pressure Loading (수중 운동체의 거동 및 표면 압력하중 예측에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.405-412
    • /
    • 2017
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the platform. Qualitative analysis was conducted for the time history of vapor volume fraction distributions. Uncorking pressure around the projectile and platform was analyzed to predict impact force acting on the surfaces. The results of 6DOF analysis presented similar tendency with the surficial pressure distributions.

NUMERICAL INVESTIGATION OF AERODYNAMIC INTERACTION OF AIR-LAUNCHED ROCKETS FROM A HELICOPTER (헬리콥터로부터 발사된 로켓의 공력 간섭 현상에 대한 수치적 연구)

  • Lee, B.S.;Kim, E.J.;Kang, K.T.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • Numerical simulation of air-launched rockets from a helicopter was conducted to investigate the aerodynamic interference between air-launched rocket and helicopter. For this purpose, a three-dimensional inviscid flow solver has been developed based on unstructured meshes. An overset mesh technique was used to describe the relative motion between rocket and rocket launcher. The flow solver was coupled with six degree-of-freedom equation to predict the trajectory of free-flight rockets. For the validation, calculations were made for the impinging jet with inclined plate. The rotor downwash of helicopter was calculated and applied to simulation of air-launched rocket. It is shown that the rotor downwash has non-negligible effect on the air-launched rocket and its plume development.

Development of an Unstructured 2-D Chimera Technique for Overlapped Bodies in Relative Motion (2차원 비정렬 중첩격자계를 이용한 서로 겹쳐진 물체간의 상대운동 해석기법 개발)

  • An, Sang-Jun;Gwon, O-Jun;Jeong, Mun-Seung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.17-25
    • /
    • 2006
  • In the present study, a 2-D chimera technique for overlapped bodies in relative motion is developed using unstructured triangular meshes. The solid boundary nodes located next to the intersecting point between bodies are merged to the intersecting point to assure accurate representation of the intersecting region. In order to assign proper value of flow variables at the nodes located out of the computational field, interpolation is conducted for non-active nodes. For validation, the motions of a NACA64A006 airfoil and a NACA0012 airfoil with a plane flap are computed and the results are compared with other simulations. The motion of a launching missile ejected from a NACA0012 airfoil is also simulated.

Numerical Investigation of Aerodynamic Interference in Complete Helicopter Configurations

  • Lee, Hee-Dong;Yu, Dong-Ok;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.190-199
    • /
    • 2011
  • Unsteady flow simulations of complete helicopter configurations were conducted, and the flow fields and the aerodynamic interferences between the main rotor, fuselage, and tail rotor were investigated. For these simulations, a three-dimensional flow solver based on unstructured meshes was used, coupled with an overset mesh technique to handle relative motion among those components. To validate the flow solver, calculations were made for a UH-60A complete helicopter configuration at high-speed and low-speed forward flight conditions, and the unsteady airloads on the main rotor blade were compared to available flight test data and other calculated results. The results showed that the fuselage changed the rotor inflow distribution in the main rotor blade airloads. Such unsteady vibratory airloads were produced on the fuselage, which were nearly in-phase with the blade passage over the fuselage. The flow solver was then applied to the simulation of a generic complete helicopter configuration at various flight conditions, and the results were compared with those of the CAMRAD-II comprehensive analysis code. It was found that the main rotor blades strongly interact with a pair of disk-vortices at the outer edge of the rotor disk plane, which leads to high pulse airloads on the blade, and these airloads behave differently depending on the specific flight condition.

Numerical Study about Initial Behavior of an Ejecting Projectile for Varying Flight Conditions (비행 조건 변화에 따른 사출 운동체의 초기 거동에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon;Kwon, Hyuck-Hoon;Kang, Dong Gi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.517-526
    • /
    • 2019
  • In the present study, unsteady flows around a projectile ejected from an aircraft platform have been numerically investigated by using a three dimensional compressible RANS flow solver based on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. Initial behavior of the projectile for varying conditions, such as roll and pitch-yaw command on the control surface of the projectile, flight Mach number, and platform pitch angle, was investigated. The ejection stability of the projectile was degraded as Mach number increases. In the transonic condition, the initial behavior of the projectile was found to be unstable as increase of platform pitch angle. By applying the command to control surfaces of the projectile, initial stability was highly enhanced. It was concluded that the proposed simulation data are useful for estimating the ejection behavior of a projectile in design phase.

Numerical Analysis of Flowfield around Multicopter for the Analysis of Air Data Sensor Installation (대기자료센서 장착위치 분석을 위한 멀티콥터 주변 유동장 수치해석)

  • Park, Young Min;Lee, Chang Ho;Lee, Yung Gyo
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.20-27
    • /
    • 2017
  • The present paper describes the flow analysis of the flows around the multicopter for the selection of optimal position of air data sensor. For the flow analysis, the commercial fluid dynamics solver, STAR-CCM+ was used with polygon mesh and k-w SST turbulence modeling options. For the simulation of each rotating 4 propellers, unstructured overset mesh method was used. Hovering, forward flight, ascending and descending flight conditions are selected for the analysis and airspeed and flow angle errors were investigated using the CFD results. Through the flow field analysis, sensor location above one propeller diameter distance from the propeller rotating plane showed airspeed error less than 1m/s within the typical flight conditions of multicopter except descending.

Numerical Study about Behavior of an Ejecting Projectile for Varying Initial Conditions (초기 조건 변화에 따른 사출 운동체의 거동에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.761-767
    • /
    • 2019
  • In the present study, analyses of initial behavior of an air-launched projectile for varying initial conditions are performed by coupling computational fluid dynamics and 6 degrees of freedom calculations. Accuracy of the present numerical methods is validated by comparing the present result with the measured data. Launching safety analyses are carried out for various ejecting conditions by considering weight of the projectile and magnitude of front and rear ejector forces as the major parameters of initial behavior of the projectile. A response surface of the projectile launching safety is obtained in the range of the major parameters. In all the conditions of zero rear ejector force, unsafe launching behavior is observed. As the weight of the projectile decreases, the initial launching behavior becomes more unsafe.