• Title/Summary/Keyword: Unstructured Grid System

Search Result 87, Processing Time 0.026 seconds

Unstructured Moving-Grid Finite-Volume Method for Unsteady Shocked Flows

  • Yamakawa M.;Matsuno K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.86-87
    • /
    • 2003
  • Unstructured grid system is suitable for flows of complex geometries. For problems with moving boundary walls, the grid system must be changed and deformed with time if we use a body fitted grid system. In this paper, a new moving-grid finite-volume method on unstructured grid system is proposed and developed for unsteady compressible flows with shock waves. To assure geometric conservation laws on moving grid system, a control volume on the space-time unified domain is adopted for estimating numerical flux. The method is described and applied for two-dimensional flows.

  • PDF

UNSTRUCTURED MOVING-GRID FINITE-VOLUME METHOD FOR UNSTEADY SHOCKED FLOWS

  • Yamakawa M;Matsuno K
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.24-30
    • /
    • 2005
  • Unstructured grid system is suitable for flows of complex geometries. For problems with moving boundary walls, the grid system must be time-dependently changing and deforming according to the movement of the boundaries when we use a body fitted grid system. In this paper, a new moving-grid finite-volume method on unstructured grid system is proposed and developed for unsteady compressible flows with shock waves. To assure geometric conservation laws on moving grid system, a control volume on the space-time unified domain is adopted for estimating numerical flux. The method is described and applied for two-dimensional flows.

Unstructured Quadrilateral Surface Grid Generation and Cell Size Control

  • Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.386-389
    • /
    • 2008
  • In this paper grid generation of unstructured quadrilateral surface grids is described. The current approach uses conventional Advancing Front Method which is used to generate unstructured triangular grids. Grid cell size control is done by using closeness-based global interpolation method controlled by pre-described control elements. Algorithm and procedure for quadrilateral grid generation using AFM method and cell size control method are described. Examples of quadrilateral grid generation are shown, and difficulties and problems related to the current approach are also discussed.

  • PDF

Unstructured Quadrilateral Surface Grid Generation and Cell Size Control

  • Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.386-389
    • /
    • 2008
  • In this paper grid generation of unstructured quadrilateral surface grids is described. The current approach uses conventional Advancing Front Method which is used to generate unstructured triangular grids. Grid cell size control is done by using closeness-based global interpolation method controlled by pre-described control elements. Algorithm and procedure for quadrilateral grid generation using AFM method and cell size control method are described. Examples of quadrilateral grid generation are shown, and difficulties and problems related to the current approach are also discussed.

  • PDF

Numerical Analysis on Flow and Heat Transfer in Twin-Roll Strip Casting Using an Unstructured Fixed-Grid System (비정렬 고정격자계를 이용한 쌍롤 박판주조에서의 유동장 및 열전달 해석)

  • Lee, Jun-Sik;Lee, Ju-Myeong;Jeong, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.648-657
    • /
    • 2002
  • This paper presents a numerical analysis on the solidification characteristics in twin-roll strip casting. Unstructured fixed-grid system was employed to deal with phase change. Melting of pure gallium was analyzed to confirm the validity of present program in both structured and unstructured grid systems. An algorithm for simultaneous calculation of the temperature in the roll and the molten metal pool was developed. The flow field in the pool and heat transfer features between pool and roll were shown. The effect of process parameters was also studied. Since the geometry of the molten metal Pool significantly deforms along the casting direction, unstructured grid system is more efficient. The unstructured grid system gives almost the same accuracy, even though the number of grids is only 60% of the structure done.

VOLUME CAPTURING METHOD USING UNSTRUCTURED GRID SYSTEM FOR NUMERICAL ANALYSIS OF MULTIPHASE FLOWS (다상유동 해석을 위한 비정렬격자계를 사용한 체적포착법)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.201-210
    • /
    • 2009
  • A volume capturing method using unstructured grid system for numerical analysis of multiphase flows is introduced in the present paper. This method uses an interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The novelty of CICSAM lies in the adaptive combination of high resolution discretization scheme which ensures the preservation of the sharpness and shape of the interface while retaining boundedness of the field, and no explicit interface reconstruction which is perceived to be difficult to implement on unstructured grid system. Several typical test cases for multiphase flows are presented, which are simulated by an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with CICSAM. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows.

  • PDF

Comparative Analysis of Forecasting Accuracy and Model Performance for Development of Coastal Wave Forecasting System Based on Unstructured Grid (비정형격자 기반 국지연안 파랑예측시스템 구축을 위한 예측정확도 및 모델성능 비교분석)

  • Min, Roh;Sang Myeong, Oh;Pil-Hun, Chang;Hyun-Suk, Kang;Hyung Suk, Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.188-197
    • /
    • 2022
  • We develop a coastal wave forecasting system by using the unstructured grid based on sea wind data of Global Data Assimilation and Prediction System. The verification is performed to examine the performance and accuracy of the wave model. Since the conventional grid has limited wave forecasting on complex coastlines and bathymetry, the unstructured grid system is applied for precise numerical simulation, and applicability for operational support is evaluated. Both grid systems show similar prediction trends in offshore and coastal areas, and the difference in prediction errors according to the grid system is not large. In addition, the applicability of the operational wave forecasting system is confirmed by dramatically reducing the model execution time of the unstructured grid under the same conditions.

Discrete Ordinates Interpolation Method Applied to Irregular Three-Dimensional Geometries (불규칙한 3차원 형상에 응용된 구분종좌표보간법)

  • Cha, Ho-Jin;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.814-821
    • /
    • 2000
  • The Discrete Ordinates Interpolation Method (DOIM) is tested in three-dimensional enclosures. The radiative transfer equation (RTE) is solved for a linear source term and the DOIM is formulated for a gray medium. Several interpolation methods can be applied to the DOIM scheme. Among them, the interpolation method applicable to an unstructured grid system is discussed. In a regular hexahedron enclosure, radiative wall heat fluxes are calculated and compared with exact solutions. The enclosure has an absorbing, emitting and nonscattering medium and a constant temperature distribution. These results are obtained with varying optical depths (xD = 0.1, 1.0, 10.0). Also, the same calculations are performed in an irregular hexahedron enclosure. The DOIM is applied to an unstructured grid system as well as a structured grid system for the same regular hexahedron enclosure. They are compared with the exact solutions and the computational efficiencies are discussed. When compared with the analytic solutions, results of the DOIM are in good agreement for three-dimensional enclosures. Furthermore, the DOIM can be easily applied to the unstructured grid system, which proves the reliability and versatility of the DOIM.