• Title/Summary/Keyword: Unsteady turbulent flow

Search Result 245, Processing Time 0.024 seconds

A Numerical Study of Turbulent Flow, Heat Transfer, and Solidification in Twin-Roil Continuous Casting (쌍롤 연속 주조에서의 난류 유동, 온도 및 응고 예측을 위한 연구)

  • Ha, Man Yeong;Choi, Bong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.12-24
    • /
    • 1999
  • A computer program has been developed for analyzing the two-dimensional, unsteady conservation equations for transport phenomena in the molten region of twin-roll continuous casting in order to predict the turbulent velocity, temperature fields, and solidification process of the molten steel. The energy equation of the cooling roll is solved simultaneously with the conservation equations of molten steel in order to consider heat transfer through the cooling roll. The results show the velocity, temperature and solidification pattern in the molten region with roll temperature as a function of time. The results for velocity and temperature fields with solidification are compared with those without solidification, giving different thermofluid characteristics in the molten region. We also investigated the effects of revolutional speed of roll, superheat and nozzle geometry on the turbulent flow, temperature and solidification in the molten steel and temperature fields in the cooling roll.

Development of a 2-dimensional Flow Solver using Hybrid Unstructured and Adaptive Cartesian Meshes (비정렬 및 적응 직교격자를 이용한 2차원 혼합격자계 유동해석 코드 개발)

  • Jung, M.K.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.294-301
    • /
    • 2011
  • A two-dimensional hybrid flaw solver has been developed for the accurate and efficient simulation of steady and unsteady flaw fields. The flow solver was cast to accommodate two different topologies of computational meshes. Triangular meshes are adopted in the near-body region such that complex geometric configurations can be easily modeled, while adaptive Cartesian meshes are, utilized in the off-body region to resolve the flaw more accurately with less numerical dissipation by adopting a spatially high-order accurate scheme and solution-adaptive mesh refinement technique. A chimera mesh technique has been employed to link the two flow regimes adopting each mesh topology. Validations were made for the unsteady inviscid vol1ex convection am the unsteady turbulent flaws over an NACA0012 airfoil, and the results were compared with experimental and other computational results.

  • PDF

Towards Prediction of Unsteady Turbulent Flow over a Square Cylinder using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 정사각주 주위의 비정상 난류유동의 예측)

  • Lee Sangsan
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.47-54
    • /
    • 1996
  • 비유선형 물체 주위의 유동은 정체유동, 경계층 박리 및 재부착, 주기적 와열의 생성등의 복잡한 유동현상이 공존한다. 이와 같은 유동의 2-방정식 난류모델을 이용한 정확한 예측은 일반적으로 불가능 하다고 인식되어 왔으나, 본 연구에서는 기존의 비교적 단순한 난류모델을 활용한 정사각주 주위의 비정상 난류유동의 예측 가능성을 체계적으로 규명하였다. 적절한 난류모델의 선정과 더불어 시간 정확도, 공간 정확도 및 대류항 처리법 등이 해석의 결과에 미치는 영향을 살펴 보았다. 기존의 표준 κ-ε모델은 정체점 주위에서 난류생성항의 과도한 예측으로 말미암아 재부착 및 와열생성의 정확한 예측이 불가능 하였으나, RNG κ-ε 모델을 사용한 경우 이와 같은 현상을 제거 할 수 있었다. 그러나 이 경우에도 예측의 정확도가 시간 증분, 격자의 크기 및 대류항 처리법 등에 영향을 받았으며, 특별히 대류항 처리법에 따라 상당히 민감하게 변하는 것을 알 수 있었다.

  • PDF

Numerical Study of slot injection behind a rearward-facing step into turbulent supersonic flow (초음속난류유동장에서 후향계단 후류의 측면제트분사에 대한 수치적 연구)

  • Kim J.R.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.17-22
    • /
    • 2002
  • This paper describes numerical research on transverse jet behind rearward-facing step in turbulent supersonic flowfields without chemical reaction. The purpose of transverse jet behind rearward-facing step is to improve mixing of the fuel in the combustor. Two-dimensional unsteady flowfields generated by slot injection into supersonic flow are numerically simulated by integration of Navier-Stokes equation. Final-scale turbulence effects are modeled with two-equation $\kappa-\epsilon$ model. Numerical methods are modeled high-order upwind TVDschemes. A total of 4 cases are computed, comprising slot momentum flux ratios at four step heights downstream of the step. These numerical results are represented periodic phenomenon in unsteady flowfields.

  • PDF

Prediction of Internal Broadband Noise of a Centrifugal Fan Using Stochastic Turbulent Synthetic Model (통계적 난류합성 모델을 이용한 원심홴 내부 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung;Kim, Tae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1138-1145
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted using hybrid CAA techniques based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using computational fluid dynamics(CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the internal broadband noise of the centrifugal fan is predicted using the boundary element method(BEM) and the modeled sources. The predicted noise spectrum is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

Prediction of internal broadband noise of a centrifugal fan using stochastic turbulent synthetic model (통계적난류합성모델을 이용한 원심홴 내부 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung;Kim, Tae-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.627-632
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted by using hybrid CAA technique based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using Computational Fluid Dynamics (CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the broadband noise of the centrifugal fan is predicted using Boundary Element Method (BEM) and the modeled sources. The predicted result is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

  • PDF

Unsteady wind loading on a wall

  • Baker, C.J.
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.413-440
    • /
    • 2001
  • This paper presents an extensive analysis of unsteady wind loading data on a 18 m long and 2 m high wall in a rural environment, with the wind at a range of angles to the wall normal. The data is firstly analyzed using standard statistical techniques (moments of probability distributions, auto- and cross-correlations, auto- and cross-spectra etc.). The analysis is taken further using a variety of less conventional methods - conditional sampling, proper orthogonal decomposition and wavelet analysis. It is shown that, even though the geometry is simple, the nature of the unsteady flow is surprisingly complex. The fluctuating pressures on the front face of the wall are to a great extent caused by the turbulent fluctuations in the upstream flow, and reflect the oncoming flow structures. The results further suggest that there are distinct structures in the oncoming flow with a variety of scales, and that the second order quasi-steady approach can predict the pressure fluctuations quite well. The fluctuating pressures on the rear face are also influenced by the fluctuations in the oncoming turbulence, but also by unsteady fluctuations due to wake unsteadiness. These fluctuations have a greater temporal and spatial coherence than on the front face and the quasi-steady method over-predicts the extent of these fluctuations. Finally the results are used to check some assumptions made in the current UK wind loading code of practice.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • Kang, Dong-Jin;Lakshminarayana, Budugur
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.

Experimental study of unsteady thermally stratified flow (비정상 열확산 현상 의 실험적 연구)

  • 이상준;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.767-776
    • /
    • 1985
  • Unsteady thermally stratified flow caused by two-dimensional surface discharge of warm water into a oblong channel was investigated. Experimental study was focused on the rapidly developing thermal diffusion at small Richardson number. The basic objective were to study the interfacial mixing between a flowing layer of warm water and an underlying body of cold water and to accumulate experimental data to test computational turbulence models. Mean velocity field measurements were carried out by using NMR-CT (Nuclear Magnetic Resonance-Computerized Tomography). It detects quantitative flow image of any desired section in any direction of flow in short time. Results show that at small Richardson number warm layer rapidly penetrates into the cold layer because of strong turbulent mixing and instability between the two layers. It is found that the transfer ofheat across the interface is more vigorous than that of momentum. It is also proved that the NMR-CT technique is a very valuable tool to measure unsteady three dimensional flow field.