• Title/Summary/Keyword: Unsteady pressure

Search Result 783, Processing Time 0.042 seconds

Hall Effect on Unsteady Couette Flow. with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia HazemAIi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2053-2060
    • /
    • 2005
  • The unsteady Couette flow of an electrically conducting, V1SCOUS, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

Pressure Drop and Heat Transfer Characteristics of Multi-Layer Screen (적층 스크린의 압력강하 및 열전달 특성)

  • Song, Tae-Ho;Ahn, Cheol-Woo;Kim, Chang-Kee;Ko, Hyun-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.419-425
    • /
    • 2000
  • Multiple layer of wire screen is widely used in many compact devices to filter particulates and to heat or cool fluids. However, data of flow resistance and heat transfer through such layers are rare to find and thus they are experimentally investigated in this study. Compressed air is made to flow through it to find the Ergun constants over a wide range of the Reynolds number. Also, unsteady heating of the wire screen is performed to find the equivalent heat transfer coefficient between the screen and the air by fitting the unsteady air temperature. The obtained coefficients are expressed in terms of the Reynolds number and the Prandtl number.

A Numerical Analysis of the Baffled Silencer for the Noise Diminution of Tank Gun (전차포 소음 저감을 위한 배플형 소음기의 수치해석)

  • Ko, Sung-Ho;Lee, Dong-Su;Kang, Kuk-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.217-224
    • /
    • 2007
  • A numerical analysis for a silencer with three baffles of 120mm tank gun has been performed. The Reynolds-Averaged Wavier-Stokes equations with Baldwin-Lomax turbulence model were employed to compute unsteady, compressible flow inside the tank gun and the silencer. An axisymmetric computational domain was constructed by using 12 multi block chimera grids. The resolution of flow field is observed by depicting calculated pressure and muzzle brake force. The peak blast pressure and noise through the silencer reduced approximately 99% and 41dB in comparison to the tank gun without the silencer at near filed.

A Characteristics and Analysis of Aeroacoustic Noise for Appliance Fans (가전제품 홴 공력소음 특성 및 해석)

  • 전완호;김창준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1140-1145
    • /
    • 2003
  • In this paper, some dominant aeroacoustic characteristics of fans used in appliances are reviewed. The numerical attempts to analyze tile aeroacoustic noise of fans are briefly reviewed for various fans. Axial fans for refrigerator, cross flow fans fer air-conditioner, sirocco fans and turbo fans are anal: zed. The unsteady flow field, which is essential data for aeroacoustic analysis, is calculated by commercial CFD code. Acoustic pressure is calculated by Ffowcs Williams and Hawkings equation and Lowson's equation. During the analysis, dominant noise sources are identified.

  • PDF

Unsteady Numerical Analysis of Transverse Injection Jet into Supersonic Mainstream (초음속 주유동에 수직 분사되는 제트의 비정상 수치해석)

  • Choi Jeong-Yeol;Yang Vigor
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.126-131
    • /
    • 2003
  • A series of computational simulations have been carried out for supersonic flows in a scram jet engine with and without a cavity. Transverse injection of hydrogen, a simplest form of fuel supply, is considered in the present study with the injection pressure varying from 0.5 to 1.5 MPa. The corresponding equivalence ratios are 0.167 - 0.50. The work features detailed resolution of the flow dynamics in the combustor, which was not typically available in most of the Previous studies. In particular, oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between shock waves and shear layer may cause a large excursion of flow oscillation. The role of the cavity and injection pressure are examined systematically.

  • PDF

Internal Ballistic Analysis of Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓 추진기관 내탄도 해석기법 연구)

  • Cho, Min-Gyung;Kwon, Tae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.213-216
    • /
    • 2010
  • A typical unsteady internal ballistic analysis model was proposed to take account of the erosive burning for a solid rocket motor. The variance of local velocity and pressure along grain surface are analyzed by using the continuity and momentum equation. The model introduced in this study showed good agreements with the results of previous internal ballistics program. It was investigated that the change of combustion pressure, gas velocity and regrestion rate along the grain axis.

  • PDF

Effects of Starting Angles of a Rearguider on the Performance of a Cross-Flow Fan (리어가이더 시작각 변화가 횡류홴 성능에 미치는 영향)

  • Kim, Hyung-Sub;Kim, Dong-Won;Yoon, Tae-Seok;Park, Sung-Kwan;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1981-1986
    • /
    • 2004
  • A cross-flow fan relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there exists a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, it is difficult to analyze the reciprocal relations of the cross-flow fan because each parameter is independent. Numerical analyses are conducted with different starting angles of the rearguider. Two-dimensional, unsteady governing equations are solved, using FVM, PISO algorithm, sliding grid system and ${\kappa}-{\varepsilon}$ standard turbulence model.

  • PDF

Flow Past Airfoil Moving Reciprocally in a Channel by Vortex Method

  • Ro Ki-Deok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1248-1255
    • /
    • 2006
  • The velocity and pressure fields of a ship's propulsion mechanism of the Weis-Fogh type, in which a airfoil moves reciprocally in a channel, are studied in this paper using the advanced vortex method. The airfoil and the channel are approximated by a finite number of source and vortex panels, and the free vortices are introduced from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart law and the pressure field is calculated from integrating the equation given by the instantaneous velocity and vorticity fields. Two-dimensional unsteady viscose flows of this propulsion mechanism are numerically clarified, and the calculated results agree well with the experimental ones.

Determination Methods of Pressure Monitoring Location in Water Distribution System (상수관망에서 수압모니터링지점 선정방법)

  • Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1103-1113
    • /
    • 2013
  • In this study, determination methods of the pressure monitoring location in water distribution system were introduced and applied to sample pipe network. The best determination method of the pressure monitoring location was suggested and applied to the real city pipe network. Three kinds of determination methods of pressure monitoring locations are categorized such as the sensitivity analysis according to changing roughness coefficient, pressure contribution analysis, and sensitivity analysis according to changing demand. Further-more, pressure contribution analysis and sensitivity analysis from the results of unsteady analysis were conducted and compared each other. From the results, the most accurate and simplest method was selected in this study. Therefore, the best method can be applied for the pressure management or leakage detection as a determination method of pressure monitoring location in water distribution system.

Study on Unsteady Flow Field around Rectangular Cylinders using Proper Orthogonal Decomposition (POD) (POD를 이용한 구조기본단면 주변 비정상흐름장 특성에 관한 연구)

  • Lee, Jae-Hyung;Matsumato, Masaru
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.751-759
    • /
    • 2008
  • In this study, the effect of an unsteady flow field around a body of aerostatic/aerodynamic forces were investigated using rectangular cylinders (B/D = 2, 3, 4, 5). Proper orthogonal decomposition (POD) was introduced to the analysis of the fluctuating pressure field that was measured on the stationary/oscillatory B/D=4 rectangular cylinder, and the characteristics of the proper functions with flow patterns were identified. In addition, the physical decoupling and interactions in the different co-existing flow patterns were investigated through POD. The comparison with the identified proper function associated with a particular flow pattern revealed that the Karman vortex is almost not affected by the separation bubble, but that the Karman vortex considerably interferes in the development of the separation bubble around the trailing edge. It can be considered that the Karman vortex induces the increment of the curvature of the substantial separated flow.