• Title/Summary/Keyword: Unsteady energy analysis

Search Result 117, Processing Time 0.034 seconds

Analysis of the Molten Metal Direct Rolling for Magnesium Considering Thermal Flow Phenomena (열 유동 현상을 고려한 마그네슘 용탕 직접 압연공정 해석)

  • Bae J.W.;Kang C.G.;Kang S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.786-789
    • /
    • 2005
  • The proper parameters in a twin roll strip casting are important to obtain the stabilization of the Mg sheet. What is examined in this paper is the quantitative relationships of the important control parameters such as the roll speed, height of pool region, outlet size of nozzle, solidification profile and the final point of solidification in a twin roll strip casting Unsteady conservation equations were used for transport phenomena in the pool region of a twin roll strip casting in order to predict a velocity, temperature distributions of fields and a solidification process of molten magnesium. The energy equation of cooling roll Is solved simultaneously with the conservation equations of molten magnesium In order to consider the heat transfer through the cooling roil. The finite difference method (2-D) and the finite element method (2-D) are used in the analysis of pool region and cooling roil to reduce computing time and to improve the accuracy of calculation respectively.

  • PDF

A Numerical Analysis of Heat Transfer in Bright Annealing Furnace of Stainless Steel Strip (Strainless steel strip 광휘어닐링로 내의 열전달 해석)

  • Ryou, H.S.;Jeong, Y.T.;Jang, B.L.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.228-233
    • /
    • 2009
  • In order to predict the temperature distribution of stainless steel strip in Bright Annealing (BA) furnace, we performed the analysis of heat transfer and fluid flow using STAR-CCM+. The analysis model included unsteady fluid flow, heat transfer with radiation and moving grid. Two kinds of radiative properties, emissivity and reflectivity, were applied to the stainless steel strip, one is constant and the other is variable with time. As we call, the BA furnaces of stainless steel strip have two different types, muffle and no-muffle. The using of muffle type has been faced with some problems such as rising in material price and shortening of life cycle, etc. So the development of no-muffle type BA furnace is very important in order to save energy cost, lower environmental load and increase the productivity. The designed (or expected) temperature of stainless steel strip coming out of BA furnace was about $1065^{\circ}C$ while the environment temperature maintains around $1100^{\circ}C$. The result of our calculation was very close (or similar) to design temperature, and the application of radiative properties variable with time produced more accurate result than applying constant ones.

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism

  • Sharif, Humaira;Naeem, Muhammad N.;Khadimallah, Mohamed A.;Ayed, Hamdi;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Hussain, Sajjad;Hussain, Muzamal;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.357-367
    • /
    • 2020
  • The impulse of this paper is to examine the influence of unsteady flow comprising of Eyring-Powell nanofluid over a stretched surface. This work aims to explore efficient transfer of heat in Eyring-Powell nanofluid with bio-convection. Nanofluids possess significant features that have aroused various investigators because of their utilization in industrial and nanotechnology. The influence of including motile microorganism is to stabilize the nanoparticle suspensions develop by the mixed influence of magnetic field and buoyancy force. This research paper reveals the detailed information about the linearly compressed Magnetohydrodynamics boundary layer flux of two dimensional Eyring-Powell nanofluid through disposed surface area due to the existence of microorganism with inclusion the influence of non- linear thermal radiation, energy activation and bio-convection. The liquid is likely to allow conduction and thickness of the liquid is supposed to show variation exponentially. By using appropriate similarity type transforms, the nonlinear PDE's are converted into dimensionless ODE's. The results of ODE's are finally concluded by employing (HAM) Homotopy Analysis approach. The influence of relevant parameters on concentration, temperature, velocity and motile microorganism density are studied by the use of graphs and tables. We acquire skin friction, local Nusselt and motil microorganism number for various parameters.

Study on Design of Darrieus-type Tidal Stream Turbine Using Parametric Study (파라메트릭 스터디를 통한 조류발전용 다리우스 터빈의 설계연구)

  • Han, Jun-Sun;Hyun, Beom-Soo;Choi, Da-Hye;Mo, Jang-Oh;Kim, Moon-Chan;Rhee, Shin-Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • This paper deals with the performance analysis and design of the Darrieus-type vertical axis turbine to evaluate the effect of key design parameters such as number of blade, blade chord, pitch and camber. The commercial CFD software FLUENT was employed as an unsteady Reynolds-Averaged Navier-Stokes (RANS) solver with k-e turbulent model. Grid system was modelled by GAMBIT. Basic numerical methodology of the present study is appeared in Jung et al. (2009). Two-dimensional analysis was mostly adopted to avoid the barrier of massive calculation required for parametric study. It was found that the highly efficient turbine model could be designed through the optimization of design parametrrs.

A Study on the Characteristics of Lift Fluctuation Power Spectral Density on a Fin Tube in the Heat Recovery Steam Generator (배열회수 보일러 단일 휜튜브의 양력 변동 PSD 특성 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted by using single cicular tube or circular tube array and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. From the present study, the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared. For the previous mentioned purpose, the present CFD analysis introduced a single fin tube and calculated with the unsteady laminar flow over the single fin tube. The characteristics of vortex shedding and lift fluctuation over the fin tube was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single fin tube was established from the present CFD study.

Effects of Variable Guide Vane Setting Angle on the Performance of Multi-Stage Axial Compressor (가변안내깃 설치각이 다단 축류압축기 성능에 미치는 영향)

  • Park, JunYoung;Seo, JeongMin;Lim, HyungSoo;Choi, Bumseok;Choi, Taewoo;Choi, Jaeho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.9-18
    • /
    • 2016
  • Generally the variable guide vane is used to secure the sufficient operating point in the off-design condition. In this study the inlet guide vane, 1st and 2nd stators in a multi-stage axial compressor are movable to obtain the operating range. So the effects of variable guide vane setting angle on the performance of 2.5 stage axial compressor were investigated at 70 % and 90 % conditions of nominal rotating speed in this paper. The steady-state and unsteady numerical analyses were conducted at each operating condition. The performance map, lost efficiency and flow fields were compared.

Aerodynamic Noise Analysis of High Speed Wind Turbine System for Design Parameters of the Rotor Blade (고속 회전 풍력 시스템의 로터 설계 인자에 따른 공력 소음 해석 연구)

  • Lee, Seung-Min;Kim, Ho-Geon;Son, Eun-Kuk;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.521-524
    • /
    • 2009
  • This study describes aerodynamic noise of high speed wind turbine system, which is invented as a new concept in order to reduce the torque of main shaft, for design parameters of the rotor blade. For parametric study of high speed rotor aerodynamic noise, Unsteady Vortex Lattice Method with Nonlinear Vortex Correction Method is used for analysis of wind turbine blade aerodynamic and Farassat1A and Semi-Empirical are used for low frequency noise and airfoil self noise. Parameters are chord length, twist and rotational speed for this parametric research. In the low frequency range, the change of noise is predicted the same level as each parameters varies. However, in case of broadband noise of blade, the change of rotational speed makes more variation of noise than other parameters. When the geometric angles of attack are fixed, as the rotational speed is increased by 5RPM, the noise level is increased by 4dB.

  • PDF

A study on the Vibration Damping of a gun barrel using Dynamically Tuned Shroud (차열관을 이용한 포신의 진동 감쇠에 대한 연구)

  • Koh, Jae-Min;Kim, Kyeon-Sik;Kim, Jin-Woo;Jung, Hyun-Woo;Hwang, Jai-Hyuk;Bae, Jai-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.4
    • /
    • pp.28-36
    • /
    • 2010
  • Current tanks have been developed to increase mobility and firepower, and its maximum range and destructive power are improved. This great change causes remained vibration of a gun barrel after firing. For this reason, people are trying to control vibration of gun barrel effectively. This thesis presents a modeling method and analysis results for gun barrel by using a thermal shroud as an absorber mass. DTS(Dynamically Tuned Shroud) is a vibration damping system using a thermal shroud as an added mass for decreasing remained vibration. The model has an advantage that the gun barrel's vibration can be decreased by dissipating a kinetic energy of thermal shroud without install an additional dynamic absorber to tip of the gun barrel. For analyzing the damping performance of the DTS, We derived an equation of motion of the barrel after setting a mathematical modeling, and found out the frequency analysis and tendency according to stiffness ratio between barrel and shroud.

  • PDF

Evaluation of Water Retentive Pavement as Mitigation Strategy for Urban Heat Island Using Computational Fluid Dynamics

  • Cortes, Aiza;Shimadera, Hikari;Matsuo, Tomohito;Kondo, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.179-189
    • /
    • 2016
  • Here we evaluated the effect of using water retentive pavement or WRP made from fly ash as material for main street in a real city block. We coupled computational fluid dynamics and pavement transport (CFD-PT) model to examine energy balance in the building canopies and ground surface. Two cases of 24 h unsteady analysis were simulated: case 1 where asphalt was used as the pavement material of all ground surfaces and case 2 where WRP was used as main street material. We aim to (1) predict diurnal variation in air temperature, wind speed, ground surface temperature and water content; and (2) compare ground surface energy fluxes. Using the coupled CFD-PT model it was proven that WRP as pavement material for main street can cause a decrease in ground surface temperature. The most significant decrease occurred at 1200 JST when solar radiation was most intense, surface temperature decreased by $13.8^{\circ}C$. This surface temperature decrease also led to cooling of air temperature at 1.5 m above street surface. During this time, air temperature in case 2 decreased by $0.28^{\circ}C$. As the radiation weakens from 1600 JST to 2000 JST, evaporative cooling had also been minimal. Shadow effect, higher albedo and lower thermal conductivity of WRP also contributed to surface temperature decrease. The cooling of ground surface eventually led to air temperature decrease. The degree of air temperature decrease was proportional to the surface temperature decrease. In terms of energy balance, WRP caused a maximum increase in latent heat flux by up to $255W/m^2$ and a decrease in sensible heat flux by up to $465W/m^2$.