• Title/Summary/Keyword: Unsteady combustion

Search Result 191, Processing Time 0.018 seconds

A Study on Unsteady Thermal Loading of Hydrogen Engine with Dual Injection (이중분사식 수소기관의 비정상 열부하 해석에 관한 연구)

  • Wei, Shin-Whan;Kim, Yun-Young;Kim, Hong-Jun;Lee, Jong-Tai
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.2
    • /
    • pp.147-155
    • /
    • 2001
  • To measure of thermal loading in the combustion chamber of hydrogen engine with dual injection, instantaneous wall-surface temperature and unsteady heat flux of the cylinder head are measured and analyzed. The maximum wall surface temperature is shown in direct injection region which has large heat supplied. Partial and spatial temperatures have slight deviation in transient region of injection, though injection method change suddenly. All of thermal characteristics such as instantaneous temperature, temperature swing and heat flux of hydrogen engine with dual injection are remarkably higher than those of gasoline engine. It means necessity of additional countermeasure of thermal loading.

  • PDF

Unsteady Internal Ballistic Analysis of Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓의 비정상 내타도 해석 기법)

  • Cho, Min-Gyung;Heo, Jun-Young;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.221-226
    • /
    • 2008
  • A typical unsteady internal ballistic analysis model was proposed to take account the erosive burning with the variance of local velocity and pressure along grain surface to the axis of a solid rocket combustor. The model introduced in this study showed good agreements with the results of previous research. It was investigated that the combustion pressure, grain length, initial temperature, and vaporization temperature of propellant affect on the erosive burning.

  • PDF

Unsteady Internal Ballistic Analysis for Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓의 비정상 내탄도 해석 기법)

  • Cho, Min-Gyung;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • A typical unsteady internal ballistic analysis model was proposed to take account of the erosive burning with the variance of local velocity and pressure along the grain surface of a solid rocket combustor. To validate the model of concern in the study, both cases of non-erosive and erosive burning were compared with the previous researches with marginal accuracy. It was quantitatively investigated that the combustion pressure, grain length, initial temperature, and vaporization temperature of propellant affect the erosive burning characteristics.

Numerical Simulation of the Experimental Investigation of the Two Dimensional Ram Accelerator Combustion Flow Field (이차원 램 가속기 연소 유동장의 실험적 연구의 수치 모사)

  • 최정열;정인석;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.8-23
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the comparison with the experiments performed to investigate the ram accelerator flow field by using an expansion tube facility in Stanford University. Wavier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state numerical simulation shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$$O_2$$17N_2$ fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$$O_2$$12N_2$ mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. From the result of unsteady numerical simulation, the experimental result seems to be an instantaneous state during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF

The Effects of Droplet Arrangement on the Vaporization and Combustion Characteristics of Liquid Fuel Droplets (액체 연료 액적들의 배열이 증발 및 연소특성에 미치는 영향)

  • Cho, Chong-Pyo;Kim, Ho-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.17-26
    • /
    • 2003
  • The objective of present study is to understand the interaction of burning droplets in air stream for various droplet arrangement. The unsteady combustion of linearly arranged droplets with a convective flow has been studied numerically. The droplets with spacing of $5R_0\;to\;40R_0$ horizontally and with spacing of $4R_0\;to\;16R_0$ vertically are studied. The effects of Reynolds number, horizontal spacing, and vertical spacing on the interaction of burning droplets are examined. The results indicate that the droplet burning behavior is influenced by Reynolds number and relative location of droplets in the array. The interaction of droplets is increased for arrays with smaller droplet spacing. The vaporization of droplets in the array is varied with both horizontal and vertical spacing exponentially.

  • PDF

Modeling of Combustion and Heat transfer in the Iron Ore Sintering Bed;Evaluation of the Calculation Results for Various Cases (제철 소결기 배드 내 연소 및 열전달 모델링;인자 변화에 의한 계산 결과 평가)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.171-178
    • /
    • 2002
  • Numerical simulations of the condition in the iron ore sintering bed are performed for various parameters. The sintering bed is modelled as an unsteady one-dimensional progress of solid material, containing cokes and iron ore. Bed temperature, solid mass and gas species distributions are predicted for various parameters of moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results show that influences of these parameters on the bed condition should be carefully evaluated for achievement of the self-sustaining combustion without the high temperature section, which can cause the excessive melting in the bed. It suggests that the model should be extended to consider the bed structural change and multiple solid phase, which can treat the inerts and fuel particles separately.

  • PDF

Numerical Analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연발화 및 화염전파 특성 해석)

  • Kim, Seong-Ku;Yu, Yong-Wook;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.24-32
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (Representative Interactive Flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian Particle Flamelet Model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

  • PDF

Prediction of Combustion and Heat Transfer in the Sintering Bed of Iron Ore (제철 소결공정의 철광석-코크스 베드에서의 연소와 열전달 해석)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.161-168
    • /
    • 2001
  • Sintering bed of iron ore in the steel making process is one of typical applications of solid fuel bed, which has relatively uniform progress of fuel and simple processes of combustion. The sintering bed was modelled as an unsteady one-dimensional progress of fuel layer containing the two phases of solid and gas. Cokes added to the raw mix of which the amount is about 3.5% of the total weight was assumed to form a single particle with other components. In the early predition results presented in this paper, the flame propagation within the bed was not sustained after the top surface of the bed was ignited with hot gas. It suggests that the model should be extended to consider the multiple solid phase, which can treat the ore particles and the coke particles separately.

  • PDF

Numerical Simulation on Thermoacoustic Instability in the Dump Combustor (덤프 연소기에서의 열음향 불안정에 관한 수치적 연구)

  • Kim, Hyeon-Jun;Bae, Soo-Ho;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.294-301
    • /
    • 2005
  • The instabilities in rocket engines and gas turbine combustors due to the interaction between the fluid flow (acoustics) and the heat transfer (thermal energy) are called thermoacoustic or combustion instabilities. Almost all analysis assumes constant hot section temperature for Modern mathematical analysis of acoustic oscillations in Rijke type devices. However, it is impossible to predict whether a system is stable or not because the flame or heater response model can have a dramatic effect on predicted growth rates. In this study, A standard ${\kappa}-{\varepsilon}$ turbulent model and hybrid combustion model(eddy breakup model and chemical reaction) were used. After steady solution was gotten, unsteady calculation is simulated by perturbating on pressure boundary. As a result, we obtained the relationship of equivalence ratio and frequency by numerical simulation, and they are comparable to the experimental result. In addition, in spite of these results, there are limitations of using turbulent and combustion model in simulation method of thermoacoutic instability

  • PDF

Stability Evaluation of One-Dimensional Flow in Solid Rocket Motors Based on Computational Fluid Dynamics

  • Kato, Takashi;Hanzawa, Masahisa;Morita, Takakazu;Shimada, Tbru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.565-572
    • /
    • 2004
  • Numerical stability analysis of one-dimensional axial flow in solid rocket motors is performed based on the Euler equation coupled with an unsteady combustion equation of solid propellant. In order to check the numerical scheme, behavior of a standing wave in a closed tube is examined. A standing wave in solid rocket motor decays or grows depending on the total effect of propellant combustion, nozzle flow, and so on. The stability boundary of the fundamental mode standing wave is determined by changing one of the combustion parameters. In addition growth rates of the wave are calculated numerically in relatively low Mach number flow region for the motors with different port and nozzle throat diameters. The results obtained here agree well with the approximate solution. The same scheme is applied to a motor with shorter length and L*-instability is observed.

  • PDF