• Title/Summary/Keyword: Unsteady combustion

Search Result 191, Processing Time 0.024 seconds

Fuel Droplet Entrainment and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서 연료액적의 발생과 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.573-580
    • /
    • 2021
  • Paraffin wax is attracting many attentions for promising solid fuel of hybrid rocket because of its higher regression than other fuels. However, even with paraffin fuel combustion, unsteady low-frequency oscillation of combustion pressure is still observed. And, this is related to the formation of liquid layer and the entrainment of fuel droplets entering the axial combustion gas flow. This study investigates the effect of additional combustion of fuel droplets on the occurrence of low-frequency combustion instability. On the other hand, the formation of fuel droplets depends on Weber Number (the ratio of the inertial force to the surface tension of the liquid) and Reynolds Number of the oxidizer flow. Therefore, a laboratory-scale hybrid rocket was used to monitor the occurrence of combustion instability while changing We number. A series of combustion tests were conducted to control We number by changing the oxidizer flow rate or adding LDPE (low density polyethylene) to base fuel. In the results, it was confirmed that there is a critical We number above which the low-frequency combustion instability occurs.

A study on combustion instability of solid rocket motor with cylinder-slot grain (실린더-슬롯형 그레인을 가진 고체로켓모터의 연소불안정 연구)

  • Lee, Dohyung;Kim, Hongjip
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.371-377
    • /
    • 2020
  • Combustion instability occurred in the combustion test of solid rocket motor with large aspect ration Length/Diameter (L/D) and cylinder-slot grain. As a result of spectral analysis of the pressure perturbation, it was confirmed that the central axis longitudinal frequency was dominant, so that the length of the cylinder part was increased to eliminate the coincidence with acoustic node. In addition, acoustic modal analysis and flow analysis were performed to analyze the cause of instability by unsteady flow structure in solid rocket motors. It was confirmed that the combustion instability is reduced by quantitative comparison of the amplitude and frequencies of the pressure inside the combustion chamber using the grain shape before and after the design change. Finally, a combustion test was performed to verify that the combustion instability was resolved as in the flow analysis.

Measurement of Heat Flux in Rocket Combustors Using Plug-Type Heat Flux Gauges

  • Kim, Min Seok;Yu, I Sang;Kim, Wan Chan;Shin, Dong Hae;Ko, Young Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.788-796
    • /
    • 2017
  • This paper proposes a new measurement method to improve the shortcomings of an existing integral method for measuring heat flux in plug-type heat flux gauges in the high-temperature and high-pressure environments of liquid-rocket combustors. Using the existing integral measurement method, the calculation of the surface area for the heat flux in the gauge exhibits error in relation to the actual surface area. To solve this problem, transient profiles obtained from ANSYS Fluent were used to calculate unsteady heat flux as it adjusted to the measured temperature. First, a heat flux gauge was designed and manufactured specifically for use in the high-temperature and high-pressure conditions that are similar to those of liquid rocket combustors. A calibration test was performed to prove the reliability of the manufactured gauge. Then, a combustion experiment was conducted, in which the gauge was used to measure unsteady heat flux in a liquid rocket combustor that used kerosene and liquid oxygen as propellants. Reasonable heat flux values were obtained using the gauge. Therefore, the proposed measurement method is considered to offer significant improvement over the existing integral method.

An Experimental Study on Feasibility of Actively Tuned Passive Control in a Liquid Ramjet Engine (액체 램제트 엔진에서 Actively Tuned Passive Control 가능성의 실험적 연구)

  • Song, Jae-Cheon;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.107-110
    • /
    • 2009
  • Combustion oscillations are caused by a coupling between acoustic waves and unsteady heat release. They can be eliminated using passive controller such as a helmholtz resonator. But, helmholtz resonator is normally only effective over a narrow frequency range. In this work, helmholtz resonator is applied for reducing the combustion oscillations and we vary the helmholtz resonator volume using piston in oder to tune in the wide range of operating conditions. As the result, it is found that the dominant combustion oscillations can be reduced by optimizing the size of resonator volume. Also, from these results, we investigate feasibility of actively tuned passive control

  • PDF

Spray Combustion Simulation in Transverse Injecting Configurations

  • Yi, Yoon-Yong;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.186-191
    • /
    • 2004
  • The reactive flowfield of the transverse injecting combustor has been studied using Euler-Lagrange method in order to develop an efficient solution procedure for the understanding of liquid spray combustion in the transverse injecting combustor which has been widely used in ramjets and turbojet afterburners. The unsteady two-dimensional gas-phase equations have been represented in Eulerian coordinates and the liquid-phase equations have been formulated in Lagrangian coordinates. The gas-phase equations based on the conservation of mass, momentum, and energy have been supplemented by combustion. The vaporization model takes into account the transient effects associated with the droplet heating and the liquid-phase internal circulation. The droplet trajectories have been determined by the integration of the Lagrangian equation in the flow field obtained from the separate calculation without considering the iterative effect between liquid and gas phases. The reported droplet trajectories had been found to deviate from the initial conical path toward the flow direction in the very end of its lifetime when the droplet size had become small due to evaporation. The integration scheme has been based on the TEACH algorithm for gas-phase equation, the second order Runge-Kutta method for liquid-phase equations and the linear interpolation between the two coordinate systems. The calculation results has shown that the characteristics of the droplet penetration and recirculation have been strongly influenced by the interaction between gas and liquid phases in such a way that most of the vaporization process has been confined to the wake region of the injector, thereby improving the flame stabilization properties of the flowfield.

  • PDF

Unsteady heat transfer and thermal stress analysis of a gasoline engine cylinder head (실린더 헤드의 비정상 열전달 및 열응력 해석)

  • 박진무;임영훈;김병탁
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • In this study are determined the unsteady temperature and thermal stress fields for a domestic 4-cylinder, 4-cycle gasoline engine cylinder head by the three-dimensional finite element method. A representative part of the cylinder head is modelled as a combination of hexahedron isoparametric elements, and the time-dependent temperature and the heat transfer coefficient of the gas are imposed as the thermal boundary conditions for the engine speeds of 500 rpm and 2000 rpm. The obtained results, which are represented graphically, indicate that the amplitudes of temperature fluctuation during a cycle are about 10.deg. C and 3.deg. C respectively on the surface of combustion chamber, and the maximum temperature fields occur at 30.deg. , 10.deg. respectively before the initiation of the exhaust stroke. Thermal stress fields due to non-uniform temperature distributions show that compressive stress is much larger than tensile stress throughout a cycle. It is also found that the compressive stress varies with substantial amplitude between the exhaust port and ignition plug hole, and the high tensile stress with small fluctuation occurs between exhaust port and the adjacent head bolt hole.

  • PDF

NUMERICAL STUDY OF THREE-DIMENSIONAL DETONATION WAVES USING PARALLEL PROCESSING (병렬 처리를 이용한 3차원 테토네이션 파 수치해석)

  • Cho, D.R.;Choi, J.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.15-19
    • /
    • 2005
  • Three-dimensional structures of unsteady detonation wave propagating through a square-shaped tube is studied using computational method and parallel processing. Inviscid fluid dynamics equations coupled with variable-${\gamma}$ formulation and simplified one-step Arrhenius chemical reaction model were analysed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Results in three dimension show the two unsteady detonation wave propagating mode, the Rectangular and diagonal mode of detonation wave instabilities. Two different modes of instability showed the same cell length but different cell width and the geometric similarities in smoked-foil record.

  • PDF

Unsteady Flamelet Modeling for Flame Structure and Soot Formation of Lanimar Non-premixed CH4/Air Flame (비정상 화염편 모델을 이용한 대기압 층류 비예혼합 CH4/Air 화염장의 매연입자 생성 특성 및 화염구조 해석)

  • Kim, Taehoon;Jeon, Sangtae;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.137-138
    • /
    • 2012
  • The two-equation soot model based on the transient laminar flamelet model is implemented for soot formation of laminar non-premixed $CH_4/Air$ flame with detailed chemical reaction mechanism and complex thermodynamic properties. The soot model represents nucleation, growth and oxidation with gas-phase chemistry. This represented unsteady flamelet soot model has been tested and compared using well verified reference calculation result obtained solving the Full Transport Equations method.

  • PDF

A Study on the Prediction of Performance and Simulation in a Radial inflow-Turbine for Exhaust Gas Turbochargers (과급기 구동용 반경류 배기터빈의 수치해석과 성능예측)

  • Jeong, Hyo-Min;Koh, Dae-Kwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.220-228
    • /
    • 1993
  • This paper presents a description and evaluation of a detailed mathematical simulation for the steady and unsteady flow in a radial inflow-turbine which is most frequently used, at present, for exhaust gas turbochargers of internal combustion engines. As a method of computation, the two-step differential Lax-Wendroff method and the characteristic method were used. The turbine characteristics, the mass flow rate, the power output and fluid movements at the turbine scroll inlet were compared with the experiment data. The results of the simulation were in good agreement with experimental values under both steady and unsteady flow conditions.

  • PDF

Internal Ballistic Analysis of Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓 추진기관 내탄도 해석기법 연구)

  • Cho, Min-Gyung;Kwon, Tae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.213-216
    • /
    • 2010
  • A typical unsteady internal ballistic analysis model was proposed to take account of the erosive burning for a solid rocket motor. The variance of local velocity and pressure along grain surface are analyzed by using the continuity and momentum equation. The model introduced in this study showed good agreements with the results of previous internal ballistics program. It was investigated that the change of combustion pressure, gas velocity and regrestion rate along the grain axis.

  • PDF