• 제목/요약/키워드: Unsteady aerodynamics

검색결과 111건 처리시간 0.026초

중첩 격자를 이용한 제자리 및 전진 비행하는 헬리콥터 로터의 비정상 공력해석 (Unsteady Aerodynamic Analysis for Helicopter Rotor in Hovering and Forward Flight Using Overlapped Grid)

  • 임동균;위성용;김유진;권장혁;이덕주;박수형;정기훈;김승범
    • 한국항공우주학회지
    • /
    • 제37권3호
    • /
    • pp.215-223
    • /
    • 2009
  • 본 연구에서는 헬리콥터 로터 블레이드의 움직임을 모사하기 위해 중첩 격자 기법을 적용하여 헬리콥터 로터의 전진 및 제자리 비행을 모사하였다. 제자리 및 무양력 전진 비행은 Caradonna & Tung의 로터 블레이드를 적용하였으며 전진 비행은 AH-1G 로터 블레이드를 적용하여 수치해석 하였다. 전진 비행 시 cyclic pitch각에 대해서 Newton-Raphson 수렴 방법으로 수치 트림을 수행하였으며 수치 트림에 의한 결과를 실험 및 다른 수치해석 결과와 비교하였을 때 실험값과 유사한 결과를 얻었다. 또한 수치 트림에 의한 결과는 로터 전진면에서 나타나는 BVI 현상을 잘 모사하였다. 지배 방정식은 3차원 비정상 오일러 방정식을 사용하였으며 원방 경계 조건으로 리만 불변치 경계조건을 적용하였다.

Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder

  • Xu, Mao;Patruno, Luca;Lo, Yuan-Lung;de Miranda, Stefano;Ubertini, Francesco
    • Wind and Structures
    • /
    • 제35권1호
    • /
    • pp.67-81
    • /
    • 2022
  • While the aerodynamics of solid bluff bodies is reasonably well-understood and methodologies for their reliable numerical simulation are available, the aerodynamics of porous bluff bodies formed by assembling perforated plates has received less attention. The topic is nevertheless of great technical interest, due to their ubiquitous presence in applications (fences, windbreaks and double skin facades to name a few). This work follows previous investigations by the authors, aimed at verifying the consistency of numerical simulations based on the explicit modelling of the perforated plates geometry and their representation by means of pressure-jumps. In this work we further expand such investigations and, contextually, we provide insight into the flow arrangement and its sensitivity to important modelling and setup configurations. To this purpose, Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulations (LES) are performed for a 5:1 rectangular cylinder at null angle of attack. Then, using URANS, porosity and attack angle are simultaneously varied. To the authors' knowledge this is the first time in which LES are used to model a porous bluff body and compare results obtained using the explicit modelling approach to those obtained relying on pressure-jumps. Despite the flow organization often shows noticeable differences, good agreement is found between the two modelling strategies in terms of drag force.

A Study on the Unsteady Aerodynamics of Projectiles in Overtaking Blast Flowfields

  • ;;;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.409-414
    • /
    • 2011
  • A projectile that passes through a shock wave experiences drastic changes in the aerodynamic forces. These sudden changes in the forces are attributed to the wave structures produced by the projectile-shock wave interaction. A computational study using moving grid method is performed to analyze the effect of the projectile-shock wave interaction. Cylindrical and conical projectiles have been employed to study such interactions. This sort of unsteady interaction normally takes place in overtaking blast flow fields. It is found that the overall effect of overtaking a blast wave on the unsteady aerodynamic characteristics is hardly affected by the projectile configurations. However, it is noticed that the projectile configurations do affect the unsteady flow structures and hence the drag coefficient for the conical projectile shows considerable variation from that of the cylindrical projectile. The projectile aerodynamic characteristics, when it interacts with the secondary shock wave, are analyzed. It is also observed that the change in the characteristics of the secondary shock wave during the interaction is different for different projectile configurations.

  • PDF

Digital Redesign of Gust Load Alleviation System using Control Surface

  • Tak, Hyo-Sung;Ha, Cheol-Keun;Lee, Sang-Wook;Kim, Tae-Uk;Hwang, In-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.675-679
    • /
    • 2005
  • This paper deals with the problem of gust load alleviation in active control for the case that aeroelasticity takes place due to interaction between wing structure and aerodynamics on wing when aircraft meets gust during flight. Aeroservoelasticity model includes wing structure modeled in FEM, unsteady aerodynamics in minimum state approximate method, and models of actuator and sensors in state space. Based on this augmented model, digitally redesigned gust load alleviation system is designed in sampled-data control technique. From numerical simulation, this digital control system is effective to gust load on aircraft wing, which is shown in transient responses and PSD analysis to random gust inputs.

  • PDF

익형을 지나는 가속/감속 유동에 대한 연구 (Study of the Accelerating and Decelerating Free Streams over an Aerofoil)

  • 김태호;윤복현;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.5-8
    • /
    • 2003
  • 대부분의 항공기는 이/착륙시 점진적으로 가속/감속되는 유동장에 놓이게 된다. 그러나 이런 유동장에 발생하는 익형 공기역학은 상세히 조사되어 있지 않은 실정이다. 본 연구에서는 수치해석을 이용하여 가속/감속 유동장하에 놓인 익형의 공력특성을 조사하였다. 본 연구에서 얻어진 계산결과는 점진적으로 가속/감속하는 아음속 유동장에 놓인 익형의 항양비와 같은 공력특성을 예측하는데 사용되었다.

  • PDF

The Effect of Folding Wing on Aerodynamics and Power Consumption of a Flapping Wing

  • Lee, Seunghee;Han, Cheolheui
    • International Journal of Aerospace System Engineering
    • /
    • 제3권2호
    • /
    • pp.26-30
    • /
    • 2016
  • Experimental study on the unsteady aerodynamics analysis and power consumption of a folding wing is accomplished using a wind tunnel testing. A folding wing model is fabricated and actuated using servo motors. The flapping wing consists of an inboard main wing and an outboard folding wing. The aerodynamic forces and consumed powers of the flapping wing are measured by changing the flapping and folding wings inside a low-speed wind tunnel. In order to calculate the aerodynamic forces, the measured forces are modified using static test data. It was found that the effect of the folding wing on the flapping wing's total lift is small but the effect of the folding wing on the total thrust is larger than the main wing. The folding motion requires the extra use of the servo motor. Thus, the amount of the energy consumption increases when both the wings are actuated together. As the flight speed increases, the power consumption of the folding wing decreases which results in energy saving.

중첩격자를 이용한 제자리 및 전진 비행하는 헬리콥터 로터의 비정상 공력해석 (UNSTEADY AERODYNAMIC ANALYSIS FOR HELICOPTER ROTOR IN HOVERING AND FORWARDING FLIGHT USING OVERSET GRID)

  • 임동균;위성용;김유진;권장혁;이덕주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.77-81
    • /
    • 2007
  • In this paper, helicopter aerodynamics is simulated in hovering and forwarding flighst. The governing equation is the unsteady Euler equation. To consider the blade motion and moving effects, an overset grid technique is applied in this simulation. At the boundary, the Riemann invariants condition is used for inflow and outflow. To validate this method, the result is compared with Caradonna-Tung's experimental data.

  • PDF

보존적 중첩격자기법을 이용한 동적 플랩의 천이적 공력거동에 관한 수치적 연구 (Numerical Study on Transient Aerodynamics of Moving Flap Using Conservative Chimera Grid Method)

  • 최성욱;장근식;김인선
    • 한국전산유체공학회지
    • /
    • 제5권2호
    • /
    • pp.9-19
    • /
    • 2000
  • Transient aerodynamic response of an airfoil to a moving plane-flap is numerically investigated using the two-dimensional Euler equations with conservative Chimera grid method. A body moving relative to a stationary grid is treated by an overset grid bounded by a 'Dynamic Domain Dividing Line' which has an advantage for constructing a well-defined hole-cutting boundary. A conservative Chimera grid method with the dynamic domain-dividing line technique is applied and validated by solving the flowfield around a circular cylinder moving supersonic speed. The unsteady and transient characteristics of the flow solver are also examined by computations of an oscillating airfoil and a ramp pitching airfoil respectively. The transient aerodynamic behavior of an airfoil with a moving plane-flap is analyzed for various flow conditions such as deflecting rate of flap and free stream Mach number.

  • PDF

다공성 표면 평판 끝 단 위의 비정상 공력 특성에 대한 연구 (Unsteady Aerodynamics of Flat Plate with Porous Trailing-edge)

  • 정예은;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.134-137
    • /
    • 2008
  • In this study, a computational analysis is conducted to investigate the effects of porous surfaces on the lift and drag forces of the flat plate. With the porous treatment, it is found that the strength of the Karman vortex as well as its influences over the trailing-edge surface are much weakened, resulting in significant reduction of the pressure fluctuations over the flat plate. The drag and lift coefficients are decreased by 85% and 18%, respectively, compared to the solid surface. The computed results also indicate that the size of the porous surface area does not have much influences but the back side of the flat plate has non-negligible effects on the interaction between the wall and the Karman vortex. As a result, the lift coefficient for the solid back side case is decreased only by 50.5% compared to the solid case and the drag coefficient is even increased by 65%.

  • PDF

유동점성효과를 고려한 우주발사체 형상의 천음속 공탄성해석 (Aeroelastic Analyses of Space Rocket Configuration Considering Viscosity Effects)

  • 김요한;김동현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.64-71
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to the rocket configurations. Also, it is typically shown that the current computation approach can yield realistic and practical results for rocket design and test engineers.

  • PDF