• Title/Summary/Keyword: Unsteady Wake Flow

Search Result 164, Processing Time 0.024 seconds

Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver

  • Pan, Yu-cun;Zhang, Huai-xin;Zhou, Qi-dou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.899-913
    • /
    • 2019
  • In order to provide a complementary perspective to the effects of the maneuvering motions on the unsteady propeller performance, the numerical simulation of the flow field of the hull-rudder- propeller system is performed by Unsteady Reynolds-averaged Naiver-Stokes (URANS) method. Firstly, the flow fields around the submarine model without the presence of propeller in straight ahead motion and the steady diving maneuvers with submergence rudder deflections of 4°, 8° and 12° are predicted numerically. The non-uniformity characteristic of the nominal wake field is exacerbated with the increase submergence rudder angle. Then the flow field around the SUBOFF-G submarine fitted with the 4381 propeller is simulated. The axial, transverse and vertical unsteady propeller forces in different maneuvering conditions are compared. In general, as the submarine maneuvers more violently, the harmonic amplitudes of the unsteady force at the 2BPF and 3BPF increased more significantly than that at BPF.

Unsteady Flow and Noise Characteristics of a Wing in Ground Effect at Close Proximity (근접 지면효과를 받는 날개의 비정상 유동 소음 특성)

  • Seo J. H.;Kho S. R.;Moon Y. J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.783-786
    • /
    • 2002
  • The unsteady turbulent flow characteristics of NACA4406 airfoil at close proximity to the pound are numerically investigated, especially focused on the noise generation mechanism near the blunt trailing edge. The unsteady two-dimensional compressible Wavier-Stokes equations with a Spalart-Allmaras turbulence closure model are solved by the 6th-order compact scheme and the 4th-order Runge-Kutta scheme. The computation shows a noise generation by a feedback mechanism at the blunt tailing edge, where the acoustic-fluidic coupling occurs between the wall-reflected sound waves and the periodically disturbed turbulent shear layer.

  • PDF

An Analysis of the Flow and Sound Field of a Ducted Axial Fan (덕트가 있는 축류홴의 유동 및 음향장 해석)

  • Jeon, Wan Ho;Chung, Ki Hoon;Lee, Duck Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.15-23
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy, and the Kirchhoff-Helmholtz BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM lot thin body is used to calculate tile sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

LAMINAR FLOW OVER A CUBOID (직육면체를 지나는 층류 유동)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • Laminar flows over a cube and a cuboid (cube extended in the streamwise direction) are numerically investigated for the Reynolds numbers between 50 and 350. First, vortical structures behind a cube and lift characteristics are scrutinized in order to understand the variation in vortex shedding characteristics with respect to the Reynolds number. As the Reynolds number increases, the flow over a cube experiences the steady planar-symmetric, unsteady planar-symmetric, and unsteady asymmetric flows. Similar to the sphere wake, the planar-symmetric flow over a cube can be divided into two different regimes: single-frequency regime and multiple-frequency regime. The former has a single frequency due to regular shedding of vortices with the same strength in time, while the latter has multiple frequency components due to temporal variation in the strength of shed vortices. Second, the effect of the length-to-height ratio of the cuboid on the flow characteristics is investigated for the Reynolds number of 270, at which planar-symmetric vortex shedding takes place behind a cube. With the ratio smaller than one, the flow over the cuboid becomes unsteady asymmetric flow, whereas it becomes steady flow for the ratios greater than one. With increasing the ratio, the drag coefficient first decreases and then increases. This feature is related to the flow reattachment on the side faces of the cuboid.

CFD Analysis of a Partial Admission Turbine Using a Frozen Rotor Method

  • Noh, Jun-Gu;Lee, Eun-Seok;Kim, Jinhan;Lee, Dae-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.861-866
    • /
    • 2004
  • A numerical flow analysis has been performed on the partial admission turbine of KARI turbopump to support the aerodynamic and structural dynamic assessments. The flow-field in a partial admission turbine is essentially three dimensional and unsteady because of a tip clearance and a finite number of nozzles. Therefore the mixing plane method is generally not appropriate. To avoid heavy computational load due to an unsteady three dimensional calculation, a frozen rotor method was implemented in steady calculation. It adopted a rotating frame in the grid block of a rotor blade by adding some source terms in governing equations. Its results were compared with a mixing plane method. The frozen rotor method can detect the variation of flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a idea of wake loss mechanism starting from the lip of a nozzle. This wake loss was assumed to be one of the most difficult issues in turbine designers. Thus, the frozen rotor approach has proven to be an efficient and robust tool in design of a partial admission turbine.

  • PDF

Simulations of the early wake behavior induced by an impulsively started a semicircualr cylinder (급 출발하는 반원형 실린더에 의한 초기 후류거동의 시뮬레이션)

  • Cho Jiyoung;Lee Sanghwan;Jin Dongsik
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.349-352
    • /
    • 2002
  • The time-development of the wake vortices of the unsteady viscous flow past a semicircular cylinder is simulated using the vortex particle methods for direct numerical simulations(DNS). The early wake behaviour of the flow behind an impulsively started a semicircualr cylinder is evaluated for a range of Reynolds numbers between 60 and 200 with opposite body configurations respectively. The diffusion scheme based on the particle strength exchange(PSE) is used to account far the viscous effect accurately. And the vorticity generation algorithm to enforce the no-slip boundary conditions is employed. In order to redistribute particles efficiently on the distorted Lagrangian grid the particle distribution technique is adaptively revised, while maintaining the uniform resolution. The results of the simulations are compared to other experimental results.

  • PDF

Influence of a rear spoiler on a squareback car wake (리어 스포일러 장착에 의한 자동차 후류의 변화 연구)

  • Baek, Seung-Jin;Oh, Min-Soo;Lee, Jung-Ho;Kim, Moo-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1825-1829
    • /
    • 2004
  • A numerical simulation was performed of flow behind a squareback car with a rear spoiler. Influence of the rear spoiler on drag force has been studied. A lattice Boltzmann method was utilized to portray the unsteady aerodynamics of wake flows. The pressure distributions were employed to examine the vortex formation mode against the rear spoiler. It was found that the separation flow at roof end and c-pillar makes three dimensional vortex structures and the rear spoiler increases pressure on the rear glass surface.

  • PDF

Experimental study on vortex induced vibration of risers with fairing considering wake interference

  • Lou, Min;Wu, Wu-gang;Chen, Peng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • Vortex Induced Vibration (VIV) is a typical flow-structure interference phenomenon which causes an unsteady flow pattern due to vortex shedding at or near the structure's natural frequency leading to resonant vibrations. VIV may cause premature fatigue failure of marine risers and pipelines. A test model was carried out to investigate the role of a stationary fairing by varying the caudal horn angle to suppress riser VIV taking into account the effect of wake interference. The test results show significant reduction of VIV for risers disposed in tandem and side-by-side. In general, fairing with a caudal horn of $45^{\circ}$ and $60^{\circ}$ are efficient in quelling VIV in risers. The results also reveal fairing can reduce the drag load of risers arranged side-by-side. For the tandem configuration, a fairing can reduce the drag load of an upstream riser, but will enlarge the drag force of the downstream riser.

COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY (단일 공동주위의 2차원과 3차원 초음속 유동 비교)

  • Woo C.H.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF

Study of the Effects of Wakes on Cascade Flow (후류가 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.561-567
    • /
    • 2000
  • This paper is concerned with the viscous interaction between rotor and stator. The viscous interaction is caused by wakes from upstream blades. The rotor cascade in the experiment was composed with five blades, and cylinders were placed to make the stator wakes and their locations were about 50 percent upstream of blade chord. The locations of cylinders were varied in the direction of cascade axis with 0, 12.5, 25, 50, and 75 percent of pitch length. The static pressure distributions on the blade surfaces and the velocity distributions in the cascade flow were measured. From the experimental result it was found that the value of velocity defect by a cylinder wake might vary depending on the wake position within the cascade but the value at the cascade exit approached to some constant value regardless of the difference of wake locus. The momentum defect at the downstream from the cascade and the pressure distribution on the blade surfaces showed that the wake flowing near the blade surfaces caused the decrease of lift and the increase of drag regardless of the disappearance of flow separation.

  • PDF