• Title/Summary/Keyword: Unsteady Wake

Search Result 225, Processing Time 0.03 seconds

Large-Scale Vortical Structure of Turbulent Separation Bubble Affected by Unsteady Wake (비정상 후류가 난류박리기포의 응집구조에 미치는 영향)

  • Jeon, Se-Jong;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1218-1225
    • /
    • 2002
  • Large-scale vortical structure of a turbulent separation bubble affected by unsteady wake is essential to understand flow mechanisms in various fluid devices. A spoked-wheel type of wake generator provides unsteady wake, which modifies the turbulent separation bubble significantly by changing rotation directions and passing frequencies. A detailed mechanism of vortex shedding from the separation bubble with unsteady wake is analyzed by taking a conditional average with spatial box filtering, which spatially integrates measured signals at pre-determined wavelength. A convecting nature of the large-scale vortical structure is analyzed carefully. Spatial evolution of the large-scale vortical structure with frequency variance is also exemplified.

Development of a new free wake model using finite vortex element for a horizontal axis wind turbine

  • Shin, Hyungki;Park, Jiwoong;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • The treatment of rotor wake has been a critical issue in the field of the rotor aerodynamics. This paper presents a new free wake model for the unsteady analysis for a wind turbine. A blade-wake-tower interaction is major source of unsteady aerodynamic loading and noise on the wind turbine. However, this interaction can not be considered in conventional free wake model. Thus, the free wake model named Finite Vortex Element (FVE hereafter) was devised in order to consider the interaction effects. In this new free wake model, the wake-tower interaction was described by dividing one vortex filament into two vortex filaments, when the vortex filament collided with a tower. Each divided vortex filaments were remodeled to make vortex ring and horseshoe vortex to satisfy Kelvin's circulation theorem and Helmholtz's vortex theorem. This model was then used to predict aerodynamic load and wake geometry for the horizontal axis wind turbine. The results of the FVE model were compared with those of the conventional free wake model and the experimental results of SNU wind tunnel test and NREL wind tunnel test under various inflow velocity and yaw condition. The result of the FVE model showed better correlation with experimental data. It was certain that the tower interaction has a strong effect on the unsteady aerodynamic load of blades. Thus, the tower interaction needs to be taken into account for the unsteady load prediction. As a result, this research shows a potential of the FVE for an efficient and versatile numerical tool for unsteady loading analysis of a wind turbine.

Influence of the Unsteady Wake on the Flow and Heat Transfer in a Linear Turbine Cascade (비정상 후류가 선형터빈익렬의 유동 및 열전달에 미치는 영향에 관한 연구)

  • Yun, Sun-Hyeon;Sim, Jae-Gyeong;Kim, Dong-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • The influence of unsteady wake on the flow and heat transfer characteristics in a four-vane linear cascade was experimentally investigated. The unsteady wake was generated with four rotating rectangular plates located upstream of the cascade. Tested inlet Reynolds number based on chord length was set to 66,000 by controlling free-stream velocity. A hot-wire anemometer system was employed to measure turbulent velocity components. For the convective heat transfer coefficients measurement on turbine blade surface, thermochromic liquid crystal and gold film Intrex were used. It was found that the unsteady wake enhances the turbulent motion in the cascade passage and accordingly promotes the development and transition of boundary layer. It was found that the heat transfer coefficients on the blade surface increase as the plate rotating speed increases. However, the increasing of heat transfer coefficients is not significant in the case that Strouhal number is higher than 0.503.

A STUDY ON THE UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOER USING EULER EQUATIONS AND FREE WAKE METHOD (오일러 방정식과 자유 후류법을 이용한 헬리콥터 로터의 비정상 공력 해석 연구)

  • Lee, Jae-Hun;Wie, Seong-Yong;Kwon, Jang-Hyuk;Lee, Duck-Joo;Kim, Da-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.116-119
    • /
    • 2007
  • In this study the unsteady aerodynamic analysis of a hovering helicopter rotor is performed. For the accurate flow field analysis Euler equations and the free wake method are coupled. The Euler equations are solved to find the pressure distribution around the rotor, and free wake method is used to give the boundary condition for the solution of Euler equations. Also, vortex strength and wake motion after the rotor are simulated by the free wake method. The accuracy of the present method is compared with the source sink model. The present method is applied to the hovering Caradonna-Tung rotor and compared with experimental results.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1061-1064
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익혀의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.713-716
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.393-396
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • Kang, Dong-Jin;Lakshminarayana, Budugur
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.

NUMERICAL ANALYSIS FOR SUPPRESSING UNSTEADY WAKE FLOW ON WIND TURBINE TOWER USING EDISON_CFD (EDISON_전산열유체를 활용한 풍력발전기 타워의 후류 불안정성 억제에 관한 수치연구)

  • Kim, S.Y.;Jin, D.H.;Lee, K.B.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • The performance of the wind turbine is determined by wind speed and unsteady flow characteristics. Unsteady wake flow causes not only the decline in performance but also structural problems of the wind turbine. In this paper, conceptual designs for the wind turbine tower are conducted to minimize unsteady wake flow. Numerical simulations are performed to inspect the shape effect of the tower. Through the installation of additional structures at the rear of the tower, the creation of Karman vortex is delayed properly and vortex interactions are reduced extremely, which enhance the stability of the wind turbine. From the comparative analysis of lift and drag coefficients for each structure, it is concluded that two streamwise tips with a splitter plate have the most improved aerodynamic characteristics in stabilizing wake flow.

A Numerical Analysis of Unsteady Flow in a Rotor Blade Passage by Wake Passing (후류장에 의한 가스터빈 회전익 통로내 비정상 유동의 수치해석적 연구)

  • Kim, Youn J.;Jeon, Y. R.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.233-239
    • /
    • 1998
  • The effects of unsteady flow on gas turbine, particularly on a rotor blade surface are numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by the Euler equations using a time accurate marching scheme, Numerical results show that for the case of $P_s/ P_r= 1.5$, the velocity and pressure distribution on the blade surfaces have much more complex profiles than those of $P_s/ P_r= 1.0$.

  • PDF