• 제목/요약/키워드: Unsteady Vortex

검색결과 385건 처리시간 0.02초

와동과 상호작용하는 화염편에서의 오염물질 생성특성 (Pollutant Formation Characteristics in a Flamelet Interacting with a Vortex)

  • 오창보;이의주
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.9-16
    • /
    • 2010
  • Flame structure of diffusion flame interacting with a single vortex was investigated with direct numerical simulation (DNS). A well-known counterflow diffusion flame was used as an initial flat flame and single vortices were made by issuing a high-velocity jet abruptly in fuel- and air-side. The variations in the maximum concentration of major species (CO and $CO_2$) and NOx (NO and $NO_2$) with the stoichiometric scalar dissipation rate were investigated. Unsteady effects in the species concentration variation of the flame interacting with a vortex were identified by comparing with that of steady flame. $NO_2$ formation characteristics of the flame interacting with a vortex were well understood by investigating the $HO_2$ formation. To enhance the prediction performance in the fire simulation, current turbulent combustion modelings are needed to be modified by adopting the unsteady effects in the species concentrations of diffusion flame interacting with a vortex.

Bluffbody 비정상 유동장에 대한 수치해석 (Numerical simulation of unsteady flow field behind bluff body)

  • 류명석;강성모;김용모
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.350-357
    • /
    • 1997
  • The transient incompressible flow behind the axisymmetric bluff body is numerically simulated using the random vortex method(RVM). Based on the vorticity formulation of the unsteady Navier-Stokes equations, the Lagrangian approach with a stochastic simulation of diffusion using random walk technique is employed to account for the transport processes of the vortex elements. The numerical solutions for 2-dimensional recirculating flow behind a backward-facing step in the laminar range of Reynolds number are compared with experimental data. The present simulation focuses on the transitional flow regime where the recirculation zone behind the bluff body becomes highly unsteady and large-scale vortex eddies are shed from the bluff body wake due to intrinsic shear layer instabilities. The unsteady vertical flow structures and the mixing characteristics behind the bluff body are discussed in detail.

Numerical simulation of unsteady propeller/rudder interaction

  • He, Lei;Kinnas, Spyros A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.677-692
    • /
    • 2017
  • A numerical approach based on a potential flow method is developed to simulate the unsteady interaction between propeller and rudder. In this approach, a panel method is used to solve the flow around the rudder and a vortex lattice method is used to solve the flow around the propeller, respectively. An iterative procedure is adopted to solve the interaction between propeller and rudder. The effects of one component on the other are evaluated by using induced velocities due to the other component at every time step. A fully unsteady wake alignment algorithm is implemented into the vortex lattice method to simulate the unsteady propeller flow. The Rosenhead-Moore core model is employed during the wake alignment procedure to avoid the singularities and instability. The Lamb-Oseen vortex model is adopted in the present method to decay the vortex strength around the rudder and to eliminate unrealistically high induced velocity. The present methods are applied to predict the performance of a cavitating horn-type rudder in the presence of a 6-bladed propeller. The predicted cavity patterns compare well with those observed from the experiments.

비정상 층류 경계층 박리에 의한 유동 소음 (Aeroacoustic Noise Generation in Unsteady Laminar Boundary-layer Separation)

  • 최효원;문영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.300-305
    • /
    • 2001
  • The unsteady flow structure and the related noise generation, which are caused by the separation of a two-dimensional, incompressible, laminar boundary-layer on the flat plate under the influence of local adverse pressure gradient, are numerically examined. The characteristic lines of the wall pressure are examined to understand the unsteady behavior of vortex shedding near the reattachment point of the separation bubble. Also, the generation and propagation of the vortex-induced noise in the separated boundary-layer are calculated by the method of computational aero-acoustics (CAA), and the effects of Reynolds number, Mach number and the strength of the adverse pressure gradient on the unsteady flow and noise characteristics are examined.

  • PDF

노즐형상 변화에 따른 국한 슬롯형 제트의 비정상 거동에 대한 실험적 연구 (An experimental study of the unsteady flow in a confined slot jet by the change of nozzle shape)

  • 민영욱;김경천
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.55-58
    • /
    • 2006
  • The flow characteristics in a confined slot jet impinging on a flat plate were investigated by using cinematic Particle Image Velocimetry technique. The three different kinds of confined slot were applied to the jet with a view to evaluating the shape effect and the jet Reynolds number was varied from 250 to 1000 for a fixed jet-to-plate spacing of H/W=5. It was found that the vortex structures in the shear layer are developed with increase of Reynolds number and that the jet becomes unsteady by the interaction of vortex pairs between 500 and 750 of Reynolds number. Finally, the slot shape was proved to be related with the generation timing of vortex pair and the temporal vortex structure.

  • PDF

UNSTEADY AERODYNAMICS OF THE STARTING FLOW OF A PLATE OF SMALL ANGLES

  • SUNG-IK SOHN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권4호
    • /
    • pp.232-244
    • /
    • 2023
  • The unsteady dynamics of the starting flow of a flat plate is studied by using a vortex shedding model. The model describes the body and separated vortex from the trailing edge of the plate by vortex sheets, retaining a singularity at the leading edge. The model is applied to simulate the flow of an accelerated plate for small angles of attack. For numerical computations, we take two representative cases of the translational velocity of a plate: impulsive translation and uniform acceleration. The model successfully demonstrates the formation of wakes shed from the plate. The wake behind the plate is stronger for a larger angle of attack. Predictions for the lifting force from the model are in agreement with results of Navier-Stokes simulations.

VORTEX 패널법을 이용한 비정상 3차원 날개의 피칭 운동에 관한 연구 (Computational Study of Unsteady Three Dimensional Wing in Pitching Motion Utilizing Linear Vortex Panel Method)

  • 정봉구;조태환
    • 한국항공우주학회지
    • /
    • 제31권6호
    • /
    • pp.1-7
    • /
    • 2003
  • 본 연구에서는 3차원 대칭형 날개의 정상/비정상상대에서의 공기력 특성을 Vortex 패널법을 이용하여 수치적으로 연구했다. 이 프로그램은 날개 표면에 분포된 x, y 방향에 따라 선형적으로 변화는 와(Vortex)를 이용하는 프로그램을 기반으로 하여 3차원 날개 주위의 비압축성 포텐셜 흐름에 적용하였고 박리와 후류의 변형은 고려하지 않았다. NACA Airfoil 자료와 비교한 계산결과는 매우 만족스러운 일치를 보여주었다. 또한 갑작스러운 pitch-up운동과 일정한 각속도로 피칭운동을 하는 비정상 날개에 대해서도 본 방법을 적용하였다. 비정상 상태의 연구에서는 출발와류의 생성과 시간에 따른 위치를 고려함으로서 출발와류가 날개의 공기력 특성에 미치는 영향을 계산하였다. 본 방법은 피칭이나 플래핑, 회전익 해석등의 더 복잡한 경우에도 적용되어질 수 있다.

Navier-Stokes 식을 이용한 회전 진동하는 2차원 원형 실린더 주위 유동 해석 (NUMERICAL ANALYSIS OF THE FLOW AROUND A ROTARY OSCILLATING CIRCULAR CYLINDER USING UNSTEADY TWO DIMENSIONAL NAVIER-STOKES EQUATION)

  • 이명국;김재수
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.8-14
    • /
    • 2011
  • Although the geometry of circular cylinder is simple, the flow is complicate because of the flow separation and vortex shedding. In spite of many numerical and experimental researches, the flow around a circular cylinder has not been clarified even now. It has been known that the unsteady vortex shedding from a circular cylinder can vibrate and damage a structure. Lock-on phenomenon is very important in the flow around an oscillating circular cylinder. The lock-on phenomenon is that when the oscillation frequency of the circular cylinder is at or near the frequency of vortex shedding from a stationary cylinder, the vortex shedding synchronizes with the cylinder motion. This phenomenon can be recognized by the spectral analysis of the lift coefficient history. At the lock-on region the vortex is shedding by the modulated frequency to the body frequency. However, the vortex is shedding by the mixed frequencies of natural shedding and forced body frequency in the region of non-lock-on. In this paper, it was analyzed the relation between the frequency of rotary oscillating circular cylinder and the vortex shedding frequency.

와류와 전향계단의 상호작용에 의한 비정상 벽면압력 변동의 수치해석 (Numerical Analysis of the Unsteady Pressure fluctuation Generated from the Interaction between a Vortex Flow with a Forward Step)

  • 유기완;이준신
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.213-220
    • /
    • 2002
  • Modifying effects of the rectangular forward step for suppressing the unsteady pressure fluctuation during interaction between the upstream vortical flow and the edge are studied numerically. The vertical flow is modeled by a point vortex, and the unsteady pressure coefficient is obtained from the velocity and the potential fields. To investigate the effects of the edge shape the rectangular forward step is chamfered wish various angles. Calculation shows that the pressure peaks become decreased by increasing the vortex height as well as the chamfering angle. The pressure amplitudes are very sensitive to the change of the initial vertex height and its strength. From this study we can find out that the chamfered edge has two effects; the one is that it suppresses the pressure amplitude generated from the edge, and the other is that it decreases the time variation of unsteady pressure fluctuation. These modifying concepts can be applied to attenuate the self-sustained oscillation mechanism at the open cavity flow.

고 받음각 2차원 NACA0012 에어포일 주위의 비정상 공기역학적 특성 (Unsteady Aerodynamic characteristics at High Angle of Attack around Two Dimensional NACA0012 Airfoil)

  • 유재경;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.414-419
    • /
    • 2011
  • Missile am fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 60 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure distribution, etc. are analyzed according to the angle of attack. The results at a low angle of attack are compared with other results before a stall condition. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution on the airfoil surface, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF