• 제목/요약/키워드: Unsteady Pressure Fluctuation

검색결과 71건 처리시간 0.021초

Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

  • Eltaher, Mohamed A.;Attia, Mohamed A.;Soliman, Ahmed E.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.97-111
    • /
    • 2018
  • Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

Numerical Investigation of Pressure Fluctuation Reducing in Draft Tube of Francis Turbines

  • Li, WF;Feng, JJ;Wu, H;Lu, JL;Liao, WL;Luo, XQ
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권3호
    • /
    • pp.202-208
    • /
    • 2015
  • For a prototype turbine operating under part load conditions, the turbine output is fluctuating strongly, leading to the power station incapable of connecting to the grid. The field test of the prototype turbine shows that the main reason is the resonance between the draft tube vortex frequency and the generator natural vibration frequency. In order to reduce the fluctuation of power output, different measures including the air admission, water admission and adding flow deflectors in the draft tube are put forward. CFD method is adopted to simulate the three-dimensional unsteady flow in the Francis turbine, to calculate pressure fluctuations in draft tube under three schemes and to compare with the field test result of the prototype turbine. Calculation results show that all the three measures can reduce the pressure pulsation amplitude in the draft tube. The method of water supply and adding flow deflector both can effectively change the frequency and avoid resonance, thus solving the output fluctuation problem. However, the method of air admission could not change the pressure fluctuation frequency.

디젤기관의 흡.배기관 맥동류가 체적효율에 미치는 영향 (The Effect of Intake and Exhaust Pulsating Flow on the Volumetric Efficiency in a Diesel Engine)

  • 이상득;강희영;고대권;안수길
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.11-16
    • /
    • 2006
  • The pressure fluctuation in the intake and exhaust pipe of 4 stroke-cycle diesel engine is caused by reciprocating motion of piston for suction of fresh air and exhaust of burned gas. this gas dynamic effect can be utilized for increase the volumetric efficiency. Many empirical studies have been carried out to investigate the effects of intake pulsating flow on the volumetric efficiency. However, when the gas dynamic effects are utilized for the variable speed engine to increase its performance, The speed range in which the maximum volumetric efficiency is limited and there occurs some difficulties in lay-out of intake system because it become too long. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow becomes more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on the volumetric efficiency. In this paper the effects of pulsating flow of intake and exhaust pipes on volumetric efficiency were examined and evaluated. It was found that volumetric efficiency was affected by pulsating flow of intake and exhaust pipes.

  • PDF

2차원 정방형 캐비티유동장의 비정상특성 (Unsteady Characteristics of a Two-Dimensional Square Cavity Flow)

  • 이영호;최장운;도덕희
    • 설비공학논문집
    • /
    • 제7권4호
    • /
    • pp.622-632
    • /
    • 1995
  • The present numerical study is aimed to investigate time-dependent characteristics of a two-dimensional lid-driven square cavity flow of three high Reynolds numbers, $7.5{\times}10^3$, $10^4$ and $3{\times}10^4$. A conservative convection term on irregular grids was adopted by renewing the MAC type difference schemes on regular grids. Relaxation of velocity and pressure is implemented by SOLA algorithm. In case of $Re=7.5{\times}10^3$, flow behavior converges to steady state after a transient period. But for $Re=10^4$, periodic unsteady sinusoidal fluctuation of local velocity and kinetic energy is found and continuous movements of small eddies in the secondary flow regions are also discovered. Random generation of eddies and their active migrating behavior are detected for $Re=3{\times}10^4$, resulting in complete unsteady and non-linear flow characteristics. And, an organized structure similar to a Moffat vortex is also observed from the time-mean flow patterns. Furthermore, a typoon-like vortex(TLV) appears intemittently and rotates along the separation regions and boundary layers.

  • PDF

터널진입시 비정상 유동특성이 고속전철의 공력성능에 미치는 영향에 관한 수치해석적 연구 (Numerical study on the effect of three-dimensional unsteady tunnel entry flow characteristics on the aerodynamic performance of high-speed train)

  • 정수진;김태훈;성기안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권5호
    • /
    • pp.596-606
    • /
    • 2002
  • The three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, PAM-FLOW based on FEM method has been applied to analyze the flow field around the high speed train which is entering into a channel. From the present study, the pressure and flow transients were calculated and analyzed. The generation of compression wave was observed ahead of train and the high pressure in the gap between the train and the tunnel was also found due to the blockage effects. It was found that abrupt fluctuation in pressure exists in the region from train nose to shoulder of train corresponding to 10% of total length of train during tunnel entry. Computed time history of aerodynamic forces of train during tunnel entry show that drag coefficient rapidly rises and saturates at about non-dimensional time 0.31. The total increase of drag coefficient before and after tunnel entry is about 1.1%. Transient profile of lift force shows similar pattern to drag coefficient except abrupt drop after saturation and lift force in the tunnel increases 0.08% more than that before tunnel entry.

버너 출구의 형상변화에 따른 난류 예혼합 화염의 특성에 관한 LES 연구 (LES Studies on the Characteristics of Turbulent Premixed Flame with the Configurations of Burner Exit)

  • 황철홍;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.96-104
    • /
    • 2006
  • In the present paper, the effects of combustion instability on flow structure and flame dynamic with the configurations of burner exit in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. As a result of mean flow field, the change of divergent half angle(${\alpha}$) at burner exit results in variations in the size and shape of the central toroidal recirculation(CTRZ) as well as flame length by changing corner recirculation zone(CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than that of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is the most shortest, while that in the case of ${\alpha}=30^{\circ}$ is the longest by the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it is identified that the case of ${\alpha}=45^{\circ}$ shows the most largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, comparing with that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons are discussed in detail through the analysis of unsteady phenomena about recirculation zone and flame surface. Finally the effects of flame-acoustic interaction are evaluated using local Rayleigh parameter.

  • PDF

액적 분사/연소를 고려한 초음속 엔진의 buzz 특성 (Buzz Characteristic of Supersonic Propulsion System with Spray Injection and Combustion)

  • 김성진;염효원;성홍계;길현용;윤현걸
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.411-414
    • /
    • 2010
  • 초음속 엔진에서 흡입구의 buzz현상은 큰 압력진동과 연소 불안정성 그리고 추력 감소 등을 야기한다. 흡입구의 buzz현상과 액적 분사/연소의 동적인 상호관계를 이해하기 위하여 통합된 비정상 연소수치해석을 수행하였으며, 액적 모사를 위하여 TAB(Taylor Analogy Breakup) model을 적용하였다. 흡입구에서의 충격파거동과 주요 위치에서 압력거동을 분석하고 초음속 엔진 전영역에서의 음향모드를 분석하여 현 시스템의 동적거동을 파악하였다.

  • PDF

Quantifying the Variation of Mass Flow Rate generated in a Simplex Swirl Injector by the Pressure Fluctuation for Injector Dynamics Research

  • Khil, Tae-Ock;Kim, Sung-Hyuk;Cho, Seong-Ho;Yoon, Young-Bin
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.218-225
    • /
    • 2008
  • When the heat release and acoustic pressure fluctuations are generated in the combustor by irregular combustion, these fluctuations affect the mass flow rate of the propellants injected through the injectors. Also, the variations of the mass flow rate by these fluctuations again bring about irregular combustion and furthermore that is related with combustion instability. Therefore, it is very important to identify the mass variation for the pressure fluctuation on the injector and to investigate its transfer function. So, we first have studied quantifying the variation of mass flow rate generated in simplex swirl injector by injection pressure fluctuation. To acquire the transient mass flow rate in orifice with time, we have tried to measure of the flow axial velocity and liquid film thickness in orifice. The axial velocity is acquired through theoretical approach after measuring the pressure in orifice and the flow area in the orifice is measured by electric conductance method. As results, mass flow rate calculated by axial velocity and liquid film thickness measuring in orifice accorded with mass flow rate acquired by direct measuring method in the small error range within 1 percents in steady state and within 6 percents as average mass flow rate in pulsated state. Hence this method can be used to measure the mass flow rate not only in steady state but also in unsteady state because the mass flow rate in the orifice can acquire with time and this method shows very high accuracy based on the experimental results.

  • PDF

상수관망시스템에서의 장기간 모의를 위한 동역학적 모형의 개발 (The Development of Dynamic Model for Long-Term Simulation in Water Distribution Systems)

  • 박재홍
    • 한국수자원학회논문집
    • /
    • 제40권4호
    • /
    • pp.325-334
    • /
    • 2007
  • 본 연구에서는 점진적인 유량 및 압력이 변화하는 상수관망에서 Rigid Water Column Theory를 이용하여 정상모형의 확장기간 모의해석보다 정확하고 수충격 해석보다는 계산비용 및 노력 측면에서 효율적으로 장시간 부정류 해석 모형을 개발하였다. 개발된 모형을 이용하여 실제관망에 대하여 24 시간 열 수요량을 고려한 부정류 해석 및 밸브폐쇄로 인한 수충격해석 모의에 적용하였고 해석 결과는 다음과 같다. 24 시간 일변화 모의의 경우에 수요량이 증가할 경우 모든 관로에서 압력감소가 나타났으며 수요량이 감소할 경우 압력증가가 나타났다. 그리고 일 수요량의 변화에 따라 나타난 절점에서의 유량 및 압력 변화폭은 각 절점마다 다르고 수요량과 유량의 변화양상이 반대로 나타나는 관로도 발생하고 있으며 KYPIPE2의 결과와 본 모형의 유량 및 압력차이도 발생하고 있어 상수관망의 동역학적 해석의 필요성이 대두되었다. 밸브폐쇄로 인한 수충격모의에 본 모형이 적용되었을 때 본 모형은 유체의 압축성을 무시함으로 인해 밸브 완전 폐쇄와 동시에 압력과 유량의 변화가 전 관망에 발생하였고 수충격모형은 유체의 탄성으로 인해 발생된 압력파의 도달시간이 필요함으로 압력과 유량변화가 지체되어 나타났으나 전체적인 변화양상 및 변화폭의 크기 등은 유사한 경향을 나타내어 본 모형의 적용성을 입증하였다. 본 연구에서 개발된 프로그램은 장기간 점진적인 관로 부정류를 비교적 정확하게 해석할 수 있을 것으로 판단되며 이를 이용하여 관로내 오염물의 확산해석, 수요량을 고려한 절점에서의 압력제어 및 누수저감, 장기간 관로내의 유량 및 압력 변화를 고려한 관망관리 등의 분야에서 효율적으로 이용될 수 있을 것으로 기대되었다.

주거환기용 시로코홴의 공력 및 소음 특성 연구 (A Study on Aerodynamic and Noise Characteristics of a Sirocco Fan for Residential Ventilation)

  • 김진혁;송우석;이승배;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.18-23
    • /
    • 2010
  • This paper presents a procedure for the aerodynamic and aeroacoustic characteristics of a sirocco fan. For the aerodynamic and aeroacoustic analyses of the sirocco fan, three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations are solved with a shear stress transport turbulence model for turbulence closure. The flow analyses were performed on a hexahedral grid using a finite-volume solver. The validation of the numerical results is performed by comparing with experimental data for the pressure, efficiency and power. The internal flow analyses of the sirocco fan are performed to understand the unstable flow phenomenon on the casing for the wall pressure and internal flow characteristics at each position. It was found that fluctuation of pressure and locally concentrated noise source are observed near the cut-off and expansion regions of the casing.