• 제목/요약/키워드: Unsteady Performance Characteristics

검색결과 170건 처리시간 0.023초

상용 CFD 코드를 이용한 횡류홴 공력소음 특성 해석 (Analysis of the Aeroacoustic Characteristics of Cross-Flow Fan Using a Commercial CFD Code)

  • 전완호;정문기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.289-294
    • /
    • 2002
  • In this study, performance, flow characteristics and noise of a cross-flow-fan system, used in indoor unit of the split-type air conditioner, were predicted by computational simulation. Triangular elements were used to mesh the calculation domain and quadrilateral elements were attached to the blade surfaces and walls to enhance the simulation quality. The unsteady incompressible Wavier-Stokes equations were solved using a sliding mesh technique on the interface between rotating fan region and the outside. Two stripes of velocity stream inside the cross-flow-fan were shown - the one was due to the eccentric vortex and the other was due to the normal entrance flow. As the flow rate increased, the center of the eccentric vortex moved toward the inner blade tip and rear-guide, and the exiting flow still had velocity variation along the stabilizer, which can increase the noise level. The acoustic pressure was calculated by using Lowson's equation. From the calculated acoustic pressure, it was found that the trailing edge is a dominant of acoustic generation.

  • PDF

원심형 임펠러의 저소음화에 대한 연구 (A numerical study on the noise reduction methods of centrifugal impeller)

  • 전완호;정필중
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.129-136
    • /
    • 2000
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed Information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan, and to calculate the effects of small vanes that are attached in original impeller - Splitter impeller. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The splitter impeller changes the acoustic characteristics as well as performance. Two-splitter type impeller and splitter impeller which splitter locates in jet region are good for acoustic characteristics.

  • PDF

The Effect of Different Inflows on the Unsteady Hydrodynamic Characteristics of a Mixed Flow Pump

  • Yun, Long;Dezhong, Wang;Junlian, Yin;Youlin, Cai;Chao, Feng
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.138-145
    • /
    • 2017
  • The problem of non-uniform inflow exists in many practical engineering applications, such as the elbow suction pipe of waterjet pump and, the channel head of steam generator which is directly connect with reactor coolant pump. Generally, pumps are identical designs and are selected based on performance under uniform inflow with the straight pipe, but actually non-uniform suction flow is induced by upstream equipment. In this paper, CFD approach was employed to analyze unsteady hydrodynamic characteristics of reactor coolant pumps with different inflows. The Reynolds-averaged Naiver-Stokes equations with the $k-{\varepsilon}$ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The complicated structure of channel head induces the inlet flow non-uniform. The non-uniformity of the inflow induces the difference of vorticity distribution at the outlet of the pump. The variation law of blade to blade velocity at different flow rate and the difference of blade to blade velocity with different inflow are researched. The effects of non-uniform inflow on radial forces are absolutely different from the uniform inflow. For the radial forces at the frequency $f_R$, the corresponding amplitude of channel head are higher than the straight pipe at $1.0{\Phi}_d$ and $1.2{\Phi}_d$ flow rates, and the corresponding amplitude of channel head are lower than the straight pipe at $0.8{\Phi}_d$ flow rates.

핀틀을 장착한 고체추진기관의 비정상 연소 성능 분석 (Analysis of Unsteady Combustion Performance in Solid Rocket Motor with Pintle)

  • 기태석;하동성;진정근;이호성;윤현걸
    • 한국추진공학회지
    • /
    • 제19권1호
    • /
    • pp.68-75
    • /
    • 2015
  • 본 논문에서는 고체추진기관 밸브의 내부에 장착한 핀틀의 구동 응답, 추력 및 압력 데이터를 이용하여, 연소시험 시 발생한 고체추진기관 내부 압력의 비정상 특성을 분석하였다. 고체추진기관 밸브의 내부에 핀틀이라는 구조체를 장착하여 핀틀의 축방향 구동을 통해서 노즐목 면적을 조절하고, 이를 통해 고체추진기관의 압력 및 추력을 실시간으로 제어할 수 있다. 이때 연소관 내부의 압력에 비정상 특성이 나타날 수 있으며, 이러한 비정상 특성은 다양한 원인이 종합적으로 영향을 미친 결과이다. 이 경우 핀틀의 구동 응답을 이용한 내부 압력의 재예측 및 추력 대 압력 비 분석을 통해서 핀틀 구동 응답 오차와 중공 튜브 삭마에 의한 노즐목 면적 변화라는 두 가지 큰 비정상 특성의 원인을 찾아내고, 각 원인들이 연소관 내부 압력에 미치는 영향을 개별적으로 분석하였다.

NUMERICAL METHODS FOR CAVITATING FLOW

  • SHIN Byeong Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, some numerical methods recently developed for gas-liquid two-phase flows are reviewed. And then, a preconditioning method to solve cavitating flow by the author is introduced. This method employs a finite-difference Runge-Kutta method combined with MUSCL TVD scheme, and a homogeneous equilibrium cavitation model. So that it permits to treat simply the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Finally, numerical results such as detailed observations of the unsteady cavity flows, a sheet cavitation break-off phenomena and some data related to performance characteristics of hydrofoils are shown.

  • PDF

텐덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측 (Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows)

  • 노준구;김진한
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.469-475
    • /
    • 2003
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed differently according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical. The numerical results agree with the measured data in respect of their tendency. It turned out that 0% of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for 75% case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.

  • PDF

배기관의 길이변화가 4사이클 4기통 전기 점화기관의 성능에 미치는 영향에 관한 연구 (A Study on the Effect of Exhaust Pipe Length of 4 Cycle 4 Cylinder S.I. Engine on the Performance)

  • 정수진;김태훈;조진호
    • 한국안전학회지
    • /
    • 제8권3호
    • /
    • pp.3-12
    • /
    • 1993
  • In reciprocating internal combustion engine, engine performance Is greatly affected by volumetric efficiency. For gas flow, the dynamic effects caused by the pressure pulsation have influence on the volumetric efficiency and correlate to the configuration and pipe length of intake-exhaust system. In this study, the analytic investigation of the unstudy flow In exhaust pipe has been carried out by using the method of characteristics to predict volumetric efficiency. In conculusion, it is possible to take account of the exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparision of prediction with experimental datas show a good agreement on the pressure varision in the exhaust pipe which has Influence on the volumetric efficiency and performance of engine.

  • PDF

가솔린엔진 흡기매니폴드의 흡기유량 및 분배특성 (Intake-Air Flow and Distribution Characteristics of the Gasoline Engine Intake-Manifold)

  • 염경민;박성영
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.4718-4725
    • /
    • 2011
  • 본 연구는 성능 해석을 통하여 1600cc급 흡기매니폴드의 흡기유량 및 분배특성에 대한 연구를 수행하였다. 일차원 엔진 성능해석 프로그램과 3차원 유동해석프로그램을 이용하여 해석을 수행하였다. 흡기 매니폴드의 정상상태 유동해석을 수행한 결과, 일차원 유동해석과 3차원 유동해석의 유량계수 표준편차는 1% 미만으로 우수한 분배특성을 나타내었다. 일차원 해석 결과가 3차원 결과 대비 미소하게 증가된 결과를 보였지만 동등한 유량계수 경향성을 나타냈다. 비정상상태 해석은 분배특성 측면에서 정상상태 해석 결과와 유사한 결과를 보였으며, 정상상태 해석결과를 통한 비정상상태 분배특성의 예측이 가능함을 확인하였다.

임펠러 출구각 및 리어가이더 형상 변화에 따른 횡류홴의 성능 특성 (Performance Characteristics of a Cross-Flow Fan with Various Impeller Outlet Angles and Rearguiders)

  • 김형섭;김동원;윤태석;박성관;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.851-856
    • /
    • 2003
  • A cross-flow fan consists of an impeller, a stabilizer and a rearguider. When it applied for an air conditioner, an evaporator should be added. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there are a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, the reciprocal relation between the impeller and the flow passage is the important factor for performance improvement of the cross-flow tan because each parameter is independent. The performance characteristics in the cross-flow fan are graphically depicted with various impeller outlet angles and rearguiders.

  • PDF

Flow Analysis in Positive Displacement Micro-Hydro Turbine and Development of Low Pulsation Turbine

  • Kurokawa, Junichi;Matsui, Jun;Choi, Young-Do
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.76-85
    • /
    • 2008
  • In order to extract micro hydropower in the very low specific speed range, a Positive Displacement Turbine (PDT) was proposed and steady performance was determined experimentally. However, the suppression of large pressure pulsation is inevitable for practical application of PDT. The objective of the present study is to reveal the mechanism and the characteristics of pressure pulsation in PDT by use of CFD and to suppress the pressure pulsation. Unsteady CFD analysis has revealed that large pressure pulsation is caused by large variation of rotational speed of the following rotor, while the driving rotor, which is output rotor, keeps constant speed. Here is newly proposed a 4-lobe helical type rotor which can reduce the pressure pulsation drastically and the performance prediction of new PDT is determined.