• 제목/요약/키워드: Unsteady Flow-Field

검색결과 410건 처리시간 0.027초

대형 비행갑판을 갖는 함정과 풍동시험 결과를 활용한 고신뢰도 함정 Airwake 예측 (High-Fidelity Ship Airwake CFD Simulation Method Using Actual Large Ship Measurement and Wind Tunnel Test Results )

  • 정진덕;조태환;이승훈;최재훈;이학민
    • 대한조선학회논문집
    • /
    • 제60권2호
    • /
    • pp.135-145
    • /
    • 2023
  • Developing high-fidelity Computational Fluid Dynamics (CFD) simulation methods used to evaluate the airwake characteristics along a flight deck of a large ship, the various kind of data such as actual ship measurement and wind tunnel results are required to verify the accuracy of CFD simulation. Inflow velocity profile at the bow, local unsteady flow field data around the flight deck, and highly reliable wind tunnel data which were measured after reviewing Atmospheric Boundary Layer (ABL) simulation and Reynolds Number effects were also used to determine the key parameters such as turbulence model, time resolution and accuracy, grid resolution and type, inflow condition, domain size, simulation length, and so on in STAR CCM+. Velocity ratio and turbulent intensity difference between Full-scale CFD and actual ship measurement at the measurement points show less than 2% and 1.7% respectively. And differences in velocity ratio and turbulence intensity between wind tunnel test and small-scale CFD are both less than 2.2%. Based upon this fact, the selected parameters in CFD simulation are highly reliable for a specific wind condition.

송전선의 항력저감 및 소음에 관한 수치 연구 (Numerical Study for Drag and Noise Reduction of Electrical Cable)

  • 윤태석;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1716-1720
    • /
    • 2000
  • To develop the code of predicting flow-field and aeroacoustic noise by a electrical cable, a combined CFD-acoustic analogy approach is selected. The two-dimensional, unsteady, incompressible Reynolds-Averaged Navier-Stokes solver with a ${\kappa}{\omega}$, ${\kappa}{\omega}$ SST turbulence modeling is used to calculate the near-field around electrical cable. Near-field results are then coupled with two-dimensional Curle's integral formulation based upon Lighthill's acoustic analogy with an assumption of acoustic compactness. To validate this code, numerical results are compared with experimental data for a circular cylinder. The simulation shows an overprediction on acoustic amplitudes, but overally speaking, the spectrum pattern of sound pressure agrees well with experiment in an acceptable amount of error. In addition, various cross sections of a cable were selected and compared with each other in terms of drag and radiated noise.

  • PDF

질소희석된 메탄 동축류 제트에서 화염 부상 메커니즘에 관한 연구 (Mechanism of Lifted Flames in Coflow Jet with Diluted Methane)

  • 홍기정;원상희;김준홍;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.177-184
    • /
    • 2003
  • Stabilization mechanism of lifted flame in the near field of coflow jets has been investigated experimentally and numerically for methane fuel diluted with nitrogen. Lifted flames were observed only in the near field of coflow jets until blowout occurred in the normal gravity condition. To elucidate the stabilization mechanism for the stationary lifted flames in the near field of coflow jets for the diluted methane having the Schmidt number smaller than unity, the behaviors of the stationary lifted flame in microgravity and unsteady propagation phenomena were investigated numerically at various conditions of jet velocity. It has been founded that the buoyancy plays an important role for flame stabilization of lifted flame in normal gravity and the stabilization mechanism is due to the significant variation of the propagation speed of lifted flame edge compared to the local flow velocity at the edge.

  • PDF

Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models

  • Nazari, Tooraj;Rabiee, Ataollah;Kazeminejad, Hossein
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.573-578
    • /
    • 2019
  • Anisotropic distribution of the turbulent kinetic energy and the near-field excitations are the main causes of the steady state Flow-Induced Vibration (FIV) which could lead to fretting wear damage in vertically arranged supported slender rods. In this article, a combined Computational Fluid Dynamics (CFD) and Computational Structural Mechanic (CSM) approach named two-way Fluid-Structure Interaction (FSI) is used to investigate the modal characteristics of a typical rod's vibration. Performance of an Unsteady Reynolds-Average Navier-Stokes (URANS) and Large Eddy Simulation (LES) turbulence models on asymmetric fluctuations of the flow field are investigated. Using the LES turbulence model, any large deformation damps into a weak oscillation which remains in the system. However, it is challenging to use LES in two-way FSI problems from fluid domain discretization point of view which is investigated in this article as the innovation. It is concluded that the near-wall meshes whiten the viscous sub-layer is of great importance to estimate the Root Mean Square (RMS) of FIV amplitude correctly as a significant fretting wear parameter otherwise it merely computes the frequency of FIV.

Study on Steady Flow Effects in Numerical Computation of Added Resistance of Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.193-203
    • /
    • 2017
  • This study investigated the steady-flow effects present in the numerical computation of the resistance added to a ship in waves. For a ship advancing in the forward direction, a time-domain 3D Rankine panel method is applied to solve the ship motion problem, and the added resistance due to waves is calculated using a near-field method, with the direct integration of the second-order pressure on the hull surface. In the linear potential theory, the steady flow is approximated by the basis potential of a uniform flow or double-body flow in order to linearize the boundary conditions. By applying these two different linearization schemes, the coupling effects between steady and unsteady solutions were examined. Furthermore, in order to analyze the steady-flow effects on the hull geometry, the computation results for two realistic hull forms, a KVLCC2 tanker and DTC containership, were compared. In particular, the mj term, which represents the coupling effects under the body boundary condition, was evaluated considering the geometry of a non-wall-sided ship. Lastly, the characteristics of the linearization schemes were examined in relation to the disturbed waves around a ship and the components of added resistance.

파수-주파수 분석을 통한 고압 배관 내 수축 확장 노즐의 유동 소음원에 대한 수치적 연구 (Numerical investigation into flow noise source of a convergent-divergent nozzle in high pressure pipe system using wavenumber-frequency analysis)

  • 구가람;이송준;김극수;정철웅
    • 한국음향학회지
    • /
    • 제36권5호
    • /
    • pp.314-320
    • /
    • 2017
  • 일반적으로 감압밸브는 고압 가스에 의한 배관 파손을 방지하기 위해 설치된다. 그러나 감압 밸브를 지나면서 발생하는 급격한 압력 저하는 음향파의 형태로 전파되는 큰 음향 에너지를 발생 시키며, 하류 방향으로 전파되면서 배관의 벽면을 진동시키는 가진원으로 작용하여 배관의 파손을 유발한다. 따라서, 본 연구에서는 단순 수축-확장 배관을 대상으로 LES(Large-Eddy Simulation)기법과 파수-주파수 분석을 통해 유동장 내 비압축성 압력섭동과 압축성 압력 섭동을 분리하고, 밸브 유동에 의한 내부 유동소음을 예측하였다. 수치해석의 수렴성을 향상시키기 위해 먼저 정상상태 Reynolds-Averaged Navier-Stokes 방정식을 해석하여, 고정확도의 비정상 LES해석의 초기 값으로 활용하였으며, 비정상 유동장 결과로부터 파수-주파수 분석을 실시하였다. 파수-주파수 분석을 통해 비압축성 압력섭동과 압축성 압력섭동을 분리하였으며, 이를 통해 배관 내 음향유기진동에 의한 소음원 정보를 정확히 제공할 수 있음을 확인하였다.

Mesh size refining for a simulation of flow around a generic train model

  • Ishak, Izuan Amin;Alia, Mohamed Sukri Mat;Salim, Sheikh Ahmad Zaki Shaikh
    • Wind and Structures
    • /
    • 제24권3호
    • /
    • pp.223-247
    • /
    • 2017
  • By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.

주유동의 맥동과 엇갈린 2열 분사홀로부터의 막냉각 : 분사비의 영향 (Bulk Flow Pulsations and Film Cooling from Two Rows of Staggered Holes : Effect of Blowing Ratios)

  • 손동기;이준식
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1195-1207
    • /
    • 1998
  • Periodic pulsations in the static pressure near turbine surfaces as blade rows move relative to each other is one of the important sources of turbine unsteadiness. The present experiment aims to investigate the effect of the static pressure pulsations on the interaction of film coolant flows from two rows of staggered holes with mainstream and its effect on film cooling heat transfer. Potential flow pulsations are generated by the rotating shutter mechanism installed downstream of the test section, The free-stream Strouhal number based on the boundary layer thickness is in the range of 0.033 - 0.33, and the amplitude of about 10-20%. Measured are time-averaged and phase-averaged velocity variations, pressure variations and temperature distributions of the flow field. Experimental conditions are identified by boundary layer measurements. Injectant behavior is characterized by the measurements of unsteady pressure in the plenum chamber and free-stream static pressure. The film cooling effectiveness is evaluated from the insulated wall temperature measurement. It has been found that bulk flow pulsation provides very large diffusion of the injectants and the effectiveness is significantly reduced by the flow pulsations.

정익에서 발생한 비정상 후류를 지나는 터빈 동익 유동장 수치해석 (Numerical Analysis of the Turbine Rotor Flow with the Unsteady Passing Wake from a Stator)

  • 이은석
    • 한국항공우주학회지
    • /
    • 제35권4호
    • /
    • pp.275-280
    • /
    • 2007
  • 터빈스테이지는 정익과 동익으로 구성되어 있다. 정익은 동익이 필요한 축 파워를 내도록 입구조건을 만들어준다. 정익 끝단에서 발생된 후류는 동익과 간섭을 일으킨다. 본 연구에서는 이러한 정익 동익간의 간섭현상을 고찰하였다. 정익과 동익의 간격이 큰 경우, 유동해석은 독립적으로 수행 될 수 있다. 정익 주위의 유동을 해석한 후, 발생되는 후류특성을 계산하여 동익의 유동해석에 포함시키었다. 정익에서 발생된 후류는 동익에 접근함에 따라 구부러지고 절단되며 흐름방향으로 연장되는 특성을 가지고 있다. 또한 정익과 동익 간격 영향을 고찰하였으며 그 간격이 가까울수록 후류의 압력 피크로 인한 압력 및 양력손실이 커짐을 알 수 있다.

자동차 타이어의 Air-Pumping소음 예측을 위한 수치적 기법 (Numerical Method for Prediction of Air-pumping Noise by Car Tyre)

  • 김성태;정원태;정철웅;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.788-798
    • /
    • 2005
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a Piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory This paper describes an approach to predict the air-pumping noise of a car tyre with CFD/Kirchhoff integral method. The tyre groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired.'rhese unsteady flow data are used as a air-pumping source in the next CFD calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of simply modeled car tyre and through the predicted results, the influence of nonlinear effect on air-pumping noise propagation is investigated.